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1 Introduction

The aim of this short survey is to describe various models of diffusion processes where
explicit computations are at hand. Most of them arise from geometric models encountered
in various settings, and are associated with different families of orthogonal polynomials.
The aim is mainly to collect in a common place the various formulae spread out in many
different notes.

We shall see that those difusion processes and their laws, that is diffusion semigroups
and their generators, offer a rich interplay between probability, analysis, geometry and
and algebra.

Basically, we shall consider Brownian motions on euclidean spaces, spheres, Lie groups
such as SO(n), SU(n), on symmetric matrices, Hermitian matrices, together with various
projections : spectral measures, invariance under sub groups (discrete and continuous),
radial parts, etc.

In these notes, a special attention will be devoted to specific models linked with mul-
tivariate orthogonal polynomials, one the one hand because of some wonderful structure
involved, and on the other one for their importance in many applications.

The diffusions that we are concerned with are symmetric diffusions. Their are described
by 3 objects : an algebra of functions, a carré du champ perator Γ, and a measure, which
in most cases (not always) will be a probability measure. This is what is called a Markov
triple.
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2 Plan of the course

1. Generalities on symmetric diffusion operators and semigroups
2. Classical models : Brownian motions in Euclidean, spherical and hyperbolic spaces,

Sturm Liouville operators in dimension 1, Brownian motion on Lie groups, SO(d)
and SU(d).

3. Models with polynomial eigenvectors.
4. Spectral measures
5. The hypergroup property and Gasper’s theorem
6. Models on boundaries
7. The 2-d and 3-d examples : a word about invariant theory

3 Symmetric diffusion operators

Symmetric diffusion operators and their associated heat semigroups play a central
rôle in the study of continuous Markov processes, but also in differential geometry and
partial differential equations. The analysis of the associated heat or potential kernels have
been considered from many points of view, short and long time asymptotics, upper and
lower bounds, on and away from the diagonal, convergence to equilibrium, e.g. All these
topics had been deeply investigated along the past half century, see [1, 5, ?] for example.
Unfortunately, there are very few examples where computations are explicit.

We shall always consider diffusions with values in some open set in Rd, or on a manifold
(spheres or sets of matrices).

3.1 Stochastic differential equations

Formally, a diffusion process s is a continuous Markov process ξt with continuous path
with values in a topological space X, such that, for any initial point x ∈ X, and any set
of times (t1 ≤ t2 ≤ · · · ≤ tn), the law of ξtn given (ξ0, ξt1 , · · · , ξtn−1) is the law of ξtn given
ξtn−1 and also the law of ξtn−tn−1 given ξ0.

In probability, diffusion processes arise when one solves a stochastic differential equa-
tion

dξt = σ(ξt)dBt + b(ξt)dt, ξ0 = x.

Here, to fix the ideas, ξt ∈ Rd, Bt is a n dimensional Brownian motion, x 7→ σ(x) is a
smooth field of n× d matrices, and x 7→ b(x) is a smooth fields of d dimensional vectors.

In order to describe the law of such objects, one is led to compute, for a large class of
functions f ,

Pt(f)(x) = Ex(f(ξt)).
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A simple application of Ito’s formula provides the fact that

f(ξt) = f(x) +M f
t +

∫ t

0

L(f)ξs)ds,

where M f
t is a local martingale and

L(f) =
1

2

∑
ij

(σσ∗)ij(x)∂2
ijf +

∑
i

bi(x)∂if.

L is a second order differential operator with no zero order term, moreover semi-elliptic
(we shall come back to that later), that we call a diffusion operator.

In nice situations, M f is a real martingale, and taking expectations in Ito’s formula,
one gets

Pt(f)(x) = f(x) +

∫ t

0

PsLf(x)ds.

Moreover, if the stochastic differential equation has a unique solution, one also gets

Pt ◦ Ps = Pt+s,

which is called the semigroup property.

We see then that Ptf(x) is the solution of the heat equation

∂tPt(f) = LPt(f) = PtL(f).

Formally, Pt = exp(tL), and the main question is to describe this operator Pt as much as
we can from the description of L.

Even with the knowledge of L, it is not easy to obtain good expressions for the know-
ledge of Pt, (or in an equivalent way for the law of ξt. There are indeed very few cases
where this law is known explicitely : Brownian motion Ornstein-Uhlenbeck processes, odd
dimensional hyperbolic Brownian motion, some nilpotent Lie groups (however under an
integral representation which is not really easy to handle), and perhaps a few other cases.

The case is a bit simpler when the process is reversible, or symmetric. This means that
there exists a measure (not necesserily a probability measure) for which the operator L is
symmetric : for any pair of good functions f, g, one has∫

fLgdµ =

∫
gLfdµ.

This is the case of all the above mentioned examples : for the standard Brownian motion,
this measure is the Lebesgue measure.

In this situation, one may use the spectral decomposition of L, which is then a self-
adjoint operator. To fix the ideas, assume that the spectrum is discrete : one may then find
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an orthonormal basis (fn) of L2(µ) such that L(fn) = −λnfn, for some sequence of non
negative real numbers λn which are called the eigenvalues (the fact that the eigenvalues
are non negative will be explained below).

Using this spectral decomposition, one may write Pt(fn) = e−λntfn, so that writing

pt(x, y) =
∑
n

e−λntfn(x)fn(y),

provided this series converges in some reasonable sense, for example as soon as
∑

n e
−2λnt <

∞, one has

Ptf(x) =

∫
f(y)pt(x, y)µ(dy).

(This is immediately checked when f = fn and extended on any L2 function f by li-
nearity). Then, one sees that the law of ξt knowing that ξ0 = x, is nothing else than
pt(x, y)µ(dy).

Unfortunately, this representation is not very useful. It is not even at all easy to see
on it that pt(x, y) ≥ 0.

3.2 Generators and carré du champ

From now on, we start from the generator L, which is a second order differential
operator with no 0-order term, moreover semi-elliptic.

To be more precise, we shall consider some open connected set Ω ⊂ Rd, with piecewise
smooth boundary ∂Ω (say at least piecewise C1, and may be empty).

A diffusion operator L on Ω (or on a smooth manifold) is a linear second order diffe-
rential operator with no 0-order terms

(3.1) L(f) =
∑
ij

gij(x)∂2
ijf +

∑
i

bi(x)∂i(f),

such that at every point x ∈ Ω, the symmetric matrix (gij(x)) is non negative (this is the
meaning of semi-ellipticity) It is said to be elliptic when moreover this matrix (gij)(x) is
everywhere non degenerate in Ω, that we shall assume in what follows for simplicity (it
may, and will in general, be degenerate at the boundary ∂Ω). We will also assume that
the coefficients gij(x) and bi(x) are smooth.

One introduces the carré du champ

Γ(f, g) =
1

2
(L(fg)− fL(g)− gL(f)).

In the above representation,

Γ(f, g) =
∑
ij

gij(x)∂if∂jg.
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It is a first order operator in f and g, while L is second order. If f = (f1, · · · , fk), and
Φ : Rk 7→ R is smooth,{

Γ(Φ(f)), g) =
∑

i ∂iΦ(f)Γ(f, g),

L(Φ(f)) =
∑

i ∂iΦ(f)L(fi) +
∑

ij ∂
2
ijΦ(f)Γ(fi, fj).

These formulas (known as the change of variable formulas) allow to determine the action
of L and Γ on any functions f(x) and g(x) as soon as one knows L(xi) and Γ(xi, xj).
Observe that

L(xi) = bi, Γ(xi, xj) = gij.

From this and the change of variable formula, one recovers the usual form of the
operator in a system of coordinates.

These change of variable formulas are some abstract way to say that L is a second
order differential operator.

The non negativity of the matrix g at any point translates into the fact that Γ(f, f) ≥ 0
for any smooth functions.

Observe that the semi-ellipticity translates into the fact that Γ(f, f) ≥ 0.

Formally, those two properties
1. Γ(f, f) ≥ 0

2. L(1) = 0

caracterize the operators L such that Pt = exp(tL) is a Markov operator, that is

f ≥ 0 =⇒ Pt(f) ≥ 0 and Pt(1) = 1.

If one wants to compare with the finite set setting, one wants to describe finite matrices
L = (Lij) such that exp(tL) satisfy the same property. In this case, one sees a function
on the points {1, · · · , n} as a vector (f1, · · · , fn) (with fi = f(i)), and L(f)i =

∑
j Lijfj.

It is quite an elementary exercise to see that the necessary and sufficient conditions
for that is that

1. ∀i 6= j, Lij ≥ 0

2. ∀i,
∑

j Lij = 0.
It is quite immediate that in this case these condition are equivalent to the previous

ones.

Moreover, if Pt has to be a Markov operator, Cauchy-Schwartz inequality will imply
Pt(f

2) ≥ (Ptf)2, which it t = 0 provides Γ(f, f) ≥ 0.

The reverse implication, however, is much more technical in general and requires fur-
ther hypotheses on L (see [1] for precise statements).

Formally, this is the translation of the positivity preserving property of Pt = exp(tL).
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In general, the operator Pt acts on any bounded measurable function (this is an expec-
tation with respect to a probability measure), whereas the operators L and Γ only act on
good smooth functions. the relation between L and Pt is that Pt solves the heat equation

∂tPtf = PtLf = LPtf, P0(f) = f.

However, it is not clear how the description of L and some set of good functions allows
to assert a unique solution to this equation. This is the question of the determination of
a core, that we shall come to in the next section in the context of symmetric diffusion.

For the moment, we shall assume that those functions on which L and Γ act is some
algebra A of functions. In Rd or some open set Ω ⊂ Rd, one may think of A to be the set
of smooth (that is C∞) functions which are compactly supported in Ω (we shall be more
precise below).

3.3 Complex variables

Quite often, the coefficients gij and bi are analytic (they will be even polynomials in
most examples). Then, one may pair two variables (or any function) (say x and y), and
set z = x+ iy, z̄ = x− iy. Then, one may compute Γ(z, z), Γ(z̄, z̄), Γ(z, z̄), L(z and L(z̄),
by linearity and bilinearity. as such

L(z) = L(x) + iL(y), L(z̄) = L(x)− iL(y) = L(z)

Γ(z, z) = Γ(x, x)− Γ(y, y) + 2iΓ(x, y),

Γ(z̄, z̄) = Γ(x, x)− Γ(y, y)− 2iΓ(x, y) = Γ(z, z)

Γ(z, z̄) = Γ(x, x) + Γ(y, y).

Once this is expressed in terms of the variables x and y (and may be other variables),
we may change again x = (z + z̄)/2, y = (z − z̄)/(2i).

Then, we may apply the change of variable formula to any analytic function of z and
z̄ (such as polynomials).

This trick turns out to be very useful in many situations, as we shall see below, for
example for Hermite or Jacobi polynomial representations.

3.4 Reversible measures

In general, one looks for some good reference measure. A natural candidate is an
invariant measure µ, which satisfies

∫
L(f)dµ = 0, for any good function f . When this

measure is finite, we chose it to be a probability and one expects that Ptf →
∫
fdµ

when t→∞. This is called sometimes the ergodicity of the process. Of course, when the
measure is infinite, there is no such interpretation in general.
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For example for the standard Brownian motion in Rd, where L = 1
2
∆ and µ is the

Lebesgue measure dx, one has (2πt)d/2Ptf →
∫
fdx.

In reasonable situation, there is a unique such measure, up to a normalizing constant.
If one wants to look for a density ρ(x) of such a measure with respect to the Lebesgue
measure, one solves the adjoint equation L∗(ρ) = 0, where L∗ is the adjoint of L with
respect to the Lebesgue measure.

For example in the simplest case in Rd where L = ∆, then the unique solution is the
Lebesgue measure, up to a constant.

In general, it is not easy to solve explicitly this equation (except in the particular case
of symmetric operators), and the uniqueness amounts to determine the existence or non
existence of positive harmonic functions, that is positive functions h such that L(h) = 0.

The name invariant refers to the fact that if the law of ξ0 is µ, then the law of ξt
remains µ for any positive time t.

In what follows, we shall be interested in the symmetric case. We assume that the
algebra A is included in L2(µ). Then, symmetry refers to the fact that, for any pair (f, g)
of functions in A, ∫

fLgdµ =

∫
gLfdµ.

If one assumes that the constant functions belong to A (or that the constant may be
reasonably approximated by functions in A), applying the previous to g = 1 shows that if
symmetry occurs, then the measure is invariant. We sometimes call it a reversible measure,
since in this case, invariance is reinforced in the following property : for any time t > 0,
the law of the process (ξs, 0 ≤ s ≤ t) is the same as the law of (ξt−s, 0 ≤ s ≤ t), whenever
the law of ξ0 is µ.

When µ has a smooth positive density ρ with respect to the Lebesgue measure, one
has with smooth positive density measure ρ(x) with respect to the Lebesgue measure,
then L may be written as

(3.2) L(f) =
1

ρ

∑
i

∂i

(
ρ
∑
j

gij∂jf
)
,

as is readily seen using integration by parts in Ω, see [1].

From this, one may describe the operator uniquely from the matrix (gij and ρ, since

(3.3) bi =
∑
j

gij log ρ+
∑
j

∂jg
ij.

This allows to determine ρ, up to a constant, from bi and gij, although in practice this
is not always that easy.

We see in this way that the operator L in this case is entirely determined by Γ (that is
the matrix (gij))s and ρ. On a more abstract level, this relies on the integration by parts
formula.
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In the symmetric case, one has

(3.4)
∫
fL(g)dµ = −

∫
Γ(f, g)dµ.

In particular, from the positivity of Γ (the semi-ellipticity property), one has

(3.5)
∫
fL(f)dµ ≤ 0.

Applying this to an eigenvector, this shows why the eigenvalues −λn of the operator
L (when they exist) are always negative.

Moreover, the integration by parts formula (3.4) shows that the knowledge of Γ and
µ allows to determine the operator L.

In practice, on some open set Ω ⊂ Rd, the integration by parts formula (3.4) remains
true as long as f and g are smooth and one is compactly supported in Ω. In order to extend
it to wider classes, one requires boundary conditions on the functions, such as Dirichlet
(functions vanishingg at the boundary) or Neuman (normal derivatives vanishing at the
boundary).

When µ has a density ρ with respect to the Lebesgue measure, we already saw an ex-
pression for its density ρ. When the matrix g is non degenerate, there is also another repre-
sentation. The matrix g is then considered as a co-metric : its inverse is a Riemannian me-
tric. That is, writing the inverse matrix (gij), we may consider, for some vector field V with
coordinates (V i(x)) in Ω, its length which is defined as |V |2(x) =

∑
ij gij(x)V i(x)V j(x).

The matrix g = (gij) itself is then considered as a co-metric, that is a metric on one-forms.
For example, for the one form df , |df |2 = Γ(f, f).

We introduce the Laplace operator ∆g associated with g (supposed to be elliptic). This
is the operator L that we obtain when we chose ρ = det(g)−1/2, which is the Riemann
measure associated to the metric g. The main property of these Laplace operators (and
that explains why they play a particular rôle in the theory, is that a Laplace operator
remains a Laplace operator under change of coordinates (or local diffeomorphism). We
shall come back to this property in Section 3.6

Then, the symmetric operator L is written as

(3.6) L(f) = ∆g(f) + Γ(log ρ1, f),

where this time ρ1 is the density with respect to the Riemann measure. This is a good
way to track the transformation of a given L through a change of variables. Indeed, the
inverse matrix gij may in this case considered as a Riemannian metric, and the above
operator is the Laplace operator associated with this metric.

When the operator is symmetric, we may expect (it is not always the case, and this
argument mainly works when the measure is finite, and even though, this is not yet always

8 9 mars 2017



preprint under construction

true), that it may be diagonalized in through a complete orthonormal basis of L2(µ), that
is that there exists a complete orthonormal sequence (fn) and some parameters λn such
that L(fn) = −λnfn. From formula (3.5), we conclude that λn ≤ 0.

The heat kernel is then entirely characterized through Pt(fn) = e−tλnfn.

In this case, one has (at least formally), we already provided the representation of the
heat kernel Pt as

Pt(f)(x) =

∫
pt(x, y)f(y)µ(dy),

where
pt(x, y) =

∑
n

e−λntfn(x)fn(y).

However, we do not know yet that this series is convergent, and even worse, this situation
requires that the spectrum of L is discrete, which is not always the case. Moreover, this
representation is made from oscillating functions, and the result in the end is non negative.
For many purposes, it is not always convenient. Moreover, it is quite rare that one knows
the eigenvalues λn, and even less the eigenvectors fn (although there are many numerical
methods which provide good approximation form them in low dimension).

We shall be particularly interested in the case when L2(µ) admits a complete ortho-
normal basis Pq(x), q ∈ N, of polynomials such that L(Pq) = −λqPq, for some real (indeed
non negative) parameters λq : that is, the spectrum is discrete and the eigenvectors are
polynomials. This is equivalent to the fact that there exists an increasing sequence Pn of
finite dimensional subspaces of the set P of polynomials such that ∪nPn = P and such
that L maps Pn into itself. In this case, one has a way to explicitly compute (at least re-
cursively) all the eigenvalues and eigenvectors. This does not mean that one has compact
formulas for the summation of the series, except in special cases.

In order to pursue the comparison with the finite state space, when L is replaced by
a matrix Lij, an invariant measure is a dual vector µi, where µi = µ(i), satisfying

∀j = 1, · · · , n,
∑
i

µiLi,j = µj,

that is an eigenvector for the transposed matrix L∗ with eigenvalue 1, whereas the matrix
L has always an eigenvector with eigenvalue 1 which is the constant vector fi = 1.

The reversibility however is insured as soon as, for any pair (i, j), µiLij = µjLji, so
that the measure µ is determined up to a constant by the ratios Lij

Lji
.

One sees immediately that reversible measure are invariant, but reversibility requires
some special structure on the matrix L, namely that the ratios ρij =

Lij

Mji
satisfy the

co-cycle property ρijρjl = ρil.
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3.5 More about the algebra A

Up to now, we did not describe very much the algebra A. In the symmetric case, we
want the integration by parts formula to be valid on it, but in practice this is not enough.
If one wants to be able to describe Pt from the knowledge of L on A, we want A to be
dense in the domain of L, in the L2(µ) sense for example. For this we need to describe
what is the domain of L : this is the set of functions in L2(µ) such that 1

t
(Ptf − f) has an

L2(µ) limit when t → 0 (that is the domain of derivative of Pt at t = 0). The derivative
at t = 0 is then Lf (which is almast obvious from the representation Pt = exp(tL). The
general theory of semigroups in a Banach space show that this domain is always dense in
L2(µ).

Then, we want the algebra A to be dense in the domain, for the domain topology.
That is, for any f in the domain, there exists a sequence of functions (fn) in A such
that limn fn = f and limn Lfn = Lf . In this case, we say that A is a core, or that L is
essentially self adjoint on A.

Unfortunately, in general we do not know this domain. So that we are looking for
conditions to insure that the algebra A is dense in the domain, without any knowledge of
it, and even no knowledge of Pt itself, since we want to describe Pt from L on A.

There are a few criteria for that. For example, when L is elliptic, we already mentioned
the Riemannian structure associated to it. Then, if Ω is complete for this Riemannian
structure, then the set of smooth functions compactly supported in Ω is a core for L. This
completeness property may be translated in our langage in the following : there exist a
sequence (fn) of elements of A, uniformly bounded, increasing to 1, such that Γ(fn, fn)
converges uniformly to 0.

But essential self adjointness may come from other properties : for example on a
bounded set if the density of the measure ρ converges fast enough to 0 or to ∞. (This
may be made precise for example on an interval, but we shall not extend on that and
refer to [1].)

Another way to insure self-adjointness is when we may be sure that the operaor L
diagonalizes in A, that is when one may find in A a complete system of eigenvectors.
Then, moreover, A is stable under Pt.

In many models described below, this diagonalisation will be realized through poly-
nomials. But in any bounded open domain for example, the integration by parts formula
may not be realized for polynomials, since in the process of integration by parts, boundary
terms may occur. For this to happen, one requires an extra condition to hold. Assume for
example that the domain Ω ⊂ Rd has a piecewize C1 boundary, such that Stokes formula
apply. Assume moreover that the measure is a probability measure with smooth density
ρ(x) in Ω. Then, a necessary and sufficient condition for the integration by parts to hold
for on Ω for polynomials (or equivalently for the restrictions to Ω of smooth functions,
is that the matrix gij degenerates at the boundary and that at any regular point of the
boundary, the normal vector n = (ni) is in the kernel of it. More precisely, this requires
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that, for any regular point x ∈ ∂Ω, one has

∀i = 1, · · · d,
∑
j

ρ(x)gijnj = 0.

3.6 Images of a diffusion operator

3.6.1 Closed systems

It may happen that one find a finite set of functions (y1, · · · , yp) such that, writing
y = (y1, · · · , yp), L(yi) = Bi(y), and Γ(yi, yj) = Gij(y). In this situation, we say that
(y1, · · · , yp) form a closed system.

It may happen that the formula is closed for Γ and not for L : in this situation, we
shall say that we have a closed system for Γ.

Then, for any smooth function Φ : Rp 7→ R, one has

L(Φ(y)) = L1(Φ)(y),

where
L1 =

∑
ij

Gij(y)∂2
ijΦ +

∑
i

Bi(y)∂i(Φ).

Then, L1 is a new diffusion operator. In this situation, the image of the diffusion process
ξt under y : Ω 7→ Ω1 = y(Ω) ⊂ Rp is a new diffusion process ξ1t, with generator L1.

Whenever L is symmetric with respect to a reversible probability measure µ, then L1

is symmetric with respect to a new reversible probability measure µ1, which is the image
of µ under the map y. Thanks to formula (3.3), this is often an efficient way to compute
image measures.

3.6.2 Image under diffeomorphisms : change of variables

A first example of the previous situation appears when y : Ω 7→ Ω1 is a diffeomorphism.
Then, the system is automatically closed setting Bi = L(yi)◦y−1 and Gij = Γ(yi, yj)◦y−1.

It turns out that the image of a Laplace operator under such a diffeomorphism is again
a Laplace operator (this is not the case for a generic image).

Moreover, the decomposition ∆g + Γ(log ρ, ·) is unchanged under diffeomorphisms (or
local diffeomorphisms). This is the main advantage of the geometric language. In parti-
cular, if one knows how to compute the operator Γ in the new coordinates, we also know
how to compute the image of the Riemann measure, and the image of a density with
respect to the Riemann measure. This may be useful even in Euclidean cases (we shall
see that later dealing with characteristic polynomials), since it avoids the computation of
the Jacobian.
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For example, in R2, in polar coordinates, with (x, y) = reiθ, (r =
√
x2 + y2, θ =

arctan(y/x)), then Γ(r, r) = 1, Γ(θ, θ) = 1/r2, Γ(r, θ) = 0, so that the image of the Le-
besgue measure is (detg)−1/2drdθ = rdrdθ, and the Laplace operator in polar coordinates
writes

∂2
r +

1

r2
∂2
θ +

1

r
∂r.

3.6.3 Products and wrapped products

Products is the first trivial thing to do with semigroups. When considering two inde-
pendent processes ξ1

t and ξ2
t , with generators L1 and L2, the product (ξ1

t , ξ
2
t ) is a Markov

process and the generator, acting on a function f(x, y) is L1
x + L2

y.

A such, the d dimensional Brownian motion is just d independent copies of a 1-
dimensional Brownian motion.

We may also often consider skew products (or wrapped products in Riemannian geo-
metry). This consists in considering Lx + g(x)Ly. The associated process (ξt, ζt) is such
that ξt is a Markov process and ζt is a a Markov process with generator Ly, but turning at
a speed which a a function of ξt. The image of a wrapped product under (x, y) 7→ x is the
process with generator L, but this is no longer the case for the image under (x, y) 7→ y.
This is for example the case of the 2 dimensional Brownian motion in polar coordinates.

Example of a wrapped product : the Euclidean Laplace operator of Rd seen in polar
coordinates

∂2
r +

d− 1

r
∂r +

1

r2
∆S,

where ∆S is the spherical Brownian motion which is described below.

3.6.4 Invariance under transformations

Let Φ a transformation X 7→ X. It may happen that the L
(
f(Φ)

)
= L(f)(Φ). This

means that the law of Φ(ξt) when ξ0 = x is the same than the law of ξt when ξ0 = Φ(x).

For example, the Brownian motion is invariant under translation, but also under ro-
tations.

If such is the case, functions which are invariant under the transformation Φ remain
invariant after the action of L. When we find a set of such invariant functions which
generate (as σ-algebras) all the invariant functions, then we get an image process.

Invariance may occur under the action of a vector field V . Then, the operator is also
invariant under the diffeomorphisms exp(tV ). A simple example of this situation is the
Brownian motion in Rd under the translation along a coordinate x 7→ x + ted, where ed
is the last basis vector. Then, the generaor (∆) commutes indeed with the vector field
∂
∂xd

. A basis for invariant functions are then the functions (x1, · · · , xd−1), which form a
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closed system, and the result of the projection is nothing else than the d− 1-dimensional
Brownian motion.

If we use the invariance of the Laplace operator with the rotations (that is with the
full family of vector fields Vij = xi∂j − xj∂i, we get as invariant function the radius

r =
√∑d

1 x
2
i , and the result is nothing else than the Bessel process, with generator on R+

∂2
r +

d− 1

r
∂r.

We may also use some discrete group of transformations. For example, in R, let’s look
at the reflection around 0. The image of the Brownian motion is the reflected Brownian
motion. Then, a function is invariant under this reflection if and only if it is a function
of y = x2. We have ∆(x2) = 2 and Γ(x2, x2) = 4x2, such that the operator becomes, with
y = x2

4y2f ′′ + 2f ′.

Of course, going back to the usual coordinate y =
√
y the usual BM (which is no surprise,

it is a local diffeormorphism)

We shall describe many such examples of images, with some operators which are
invariant under a big group action. Then, any subgroup generates a closed system of
invariants, and provides an image. Using the rich theory of invariants provides many
interesting models, as we shall see below.

4 Basic models in Euclidean spaces

The most common models for symmetric diffusions in Rd arise when considering it as
Euclidean space. There is then a close connection between the Euclidean structure and
the process, described through it’s generator.

1. Classical Brownian motion in Rd

This process describes d independent one dimensional Brownian motions. Actually,
we do not really describe the usual Brownian motion Bt here, but rather B2t, which
is much more convenient for further purpose. It’s invariant measure is the Lebesgue
measure, that is, up to a normalizing constant, the unique Radon measure which
is invariant under translation.

Γ(xi, xj) = δij,L(xi) = 0; L = ∆.

Then,
Pt(f)(x) = F (t, x) = E

(
f(x+

√
2tX)

)
,

where X is a standard Gaussian variable N(0, 1), that is the law of X is

1

(2π)n/2
exp(−1

2
‖x‖2)dx.

13 9 mars 2017



preprint under construction

It is easily seen through integration by parts that for any smooth compactly sup-
ported fonction, the above expression solves the heat equation ∂tF = ∆F . The
reversible measure is the Lebesgue measure, which has infinite mass, but the spec-
trum is not discrete.
A Brownian motion lives naturally in an Euclidean space. The generator is easily
described on linear forms. For linear forms αi,

Γ(α1, α2) = α2 · α2,L(αi) = 0.

This generator is invariant under rotations, symmetries and translations.
One may then look at the Brownian motion on subspaces. For example, projected
onto the subspace orthogonal to e with ‖e‖ = 1, we get

Γ(α1, α2) = α2 · α2 − (α1 · e)(α2 · e).

Then for example in Rn, for this Brownian motion projected on the subspace∑
i xi = 0,

L(xi) = 0,Γ(xi, xj) = δij −
1

n
.

Imagine now that one has a process in Rn with these data, then, with l =
∑

i xi,

L(l) = 0,Γ(l, l) = 0.

If the process starts from some point X0 ∈ Rn, then, for any smooth compactly
supported function E(f(l(Xt)) = f(l(X0)) so that l(Xt) = l(X0), and therefore it
stays on the hyperplane l(x) = a where it started from.
We shall recover a lot of such situations (in matrices, Lie groups, etc). Observe
that then we may use the overdetermined system (x1, · · · , xn) on this hyperplane∑

i xi = 0, considering the functions xi as the restrictions to
∑

i xi = 0 of the linear
forms x 7→ xi.
We saw that we may project the Euclidean Brownian motion onto any d − 1
dimensional hyperplane : it reflects the invariance of the generator with respect
of the translations, or its commutation with the vector fields

∑
i αi∂xi , where αi

are constant.
We may also project it onto radial functions, with reflects the commutation with
the infinitesimal rotations xi∂j − xj∂i. We have, with r =

√∑
i x

2
i or R = r2

are exactly those functions invariant under rotations. We have Γ(R,R) = 4R and
L(R) = 2d, so that it gives

LF = 4Rf ′′ + 2dF ′

or, going to r =
√
R, gives the the Bessel processes

∂2
r +

d− 1

r
∂r.
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2. Euclidean complex Brownian motion : use of complex coordinates.
We already saw the use of complex coordinates in OU processes. For the Brownian
motion in R2d = Cd, one has
∆(zi) = ∆(z̄i) = 0, Γ(zi, zj) = 0,Γ(zi, z̄j) = 2δij.
For example, for the complex Brownian motion, of any analytic function of (zj)
one has L(f(z)) = 0. We then have the conformal martingales, that is if ξt is a
Brownian motion and f is an holomorphic function, then f(ξt) is a martingale.

3. Ornstein-Uhlenbeck in Rd

This process has as invariant measure the standard N(0, Id) Gaussian measure on
Rd.

Γ(xi, xi) = δij,L(xi) = −xi,
or

sL = ∆− x.∇.
The reversible measure is the standard Gaussian measure. Once again, one has an
explicit expression for the heat kernel as

Pt(f)(x) = E
(
f(e−tx+

√
1− e−2tX)

)
.

The spectrum is discrete, the eigenvectors are the Hermite polynomials, and the
eigenvalues are n.
The generator commutes with rotation, but not with translations. One may also
look at Ornstein-Uhlenbeck operators with other Gaussian invariant measures, for
example with variance σ2, and in this situation we get the same Γ but now with
L(xi) = − 1

σ2xi. Letting σ go to∞ we obtain an approximation of Brownian motion,
but with a finite invariant measure.
As for Brownian motion, and Ornstein-Uhlenbeck process lives naturally on an
Euclidean space, with, for the same carré du champ as a Brownian motion, and for
any linear form α, L(α) = −α.
We shall come back to this example in Section 7.

4. Spherical brownian motion on Sd−1 ⊂ Rd

This reversible process has invariant measure the uniform measure o the unit
sphere, that is the unique probability measure which is invariant under rotations.

Γ(xi, xj) = δij − xixj,L(xi) = −(d− 1)xi.

There is not simple formula for the heat kernel. The reversible measure is the
uniform measure on the sphere, and the spectrum is discrete. The eigenvalues are
n(n + d − 1). The eigenvectors are the restriction to the sphere of the Harmonic
homogenous polynomials with degree n.
Once again, it exists on any Euclidean space, with, for two linear forms α1 and α2

and in dimension d for the Euclidean space

Γ(α1, α2) = α1 · α2 − α1α2, L(α1) = −(d− 1)α1
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How do we obtain those formulas ? There are three ways of considering the spherical
Brownian motion. One may think of the sphere Sd−1 as embedded in Rd and decide
that to compute the Laplace operator of a function f defined on Sd−1, one may
first extend it into a function in the neighborhood of Sd−1 into a functions which
does not depend on the radius, then compute the Euclidean Laplace extension of
this extension and then restrict it to the sphere. Doing this, one seems that the
extension of the coordinate xi is xi

|x| , and this leads to the announced result.
Next, one may consider the sphere itself as a Riemannian manifold, the unit ball
Bd−1 as a local chart of the upper (or lower) half sphere. If x = (x1, · · · , xd−1) ∈
Bd−1, it corresponds to a point on the sphere (x,±

√
1− |x|2). Then, given a vector

V = (V1, · · · , Vd−1) at some point x ∈ Bd−1, if consider it as the projection of a
tangent vector on the sphere, we see that it’s real length is

∑
ij gijViVj, where

gij =
xixj

1− |x|2
+ δij.

This gives on the unit ball Rd−1 a Riemannian metric gij whose inverse is gij =
δij − xixj. Then, we may consider the Laplace operator associated with this as
given in formula (3.6).
Moreover, we may also consider it as a homogeneous space, that is a space on which
the group SO(d) acts transitively (more precisely as SO(d)/SO(d− 1), SO(d− 1)
being considered as the set of orthogonal transformations which lives the point
(1, 0, · · · , 0) invariant.
The infinitesimal rotation in the plane (xi, xj) is the operator Dij = xi∂j − xj∂i.

Indeed, with two coordinates (x1, x2), let Rt be the rotation Rt =

(
cos t sin t
− sin t cos t

)
.

Then, ∂tf(Rtx) |t=0 is this operator. Now, it turns out that, although the various
Dij do not commute to each other,

∑
i<j D

2
ij commute which each of the Dij and,

up to some scalar constant, it is gain the spherical Laplace operator.
How may one device from the formulas that the operator lives on the unit sphere ?
If one computes for the spherical operator L(R), where R =

∑
i x

2
i , then one finds

L(R) =
d∑
1

−2(d− 1)x2
i + 2

d∑
1

(1− x2
i ) = 2d(1−R),

which is 0 on R2 = 1. Similarly Γ(R,R) = 4
∑

ij xixj(δij − xixj) = R(1− R), one
again vanishing on R = 1.
It is not enough to assert that the operator defined by these relations live on on
the sphere. But is we consider in Rd the following operator

L(xi) = −(d− 1)xi,Γ(xi, xj) = δij|x|2 − xixj,

then one gets L(R) = Γ(R,R) = 0.
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From this, L(F (R)) = 0 for any function F and F (R(ξt) is a martingale. Therefore
|ξt| is constant and the process stays on the sphere where it started from.
The reversible measure for ∆S is the uniform measure on the sphere, that is the
unique probability measure which is invariant under rotations.
As imbedded in Rd, introducing the Euler operator V =

∑
i xi∂i, then

ΓS(f, f) = ΓE(f, f)− (V f)2, ∆S(f) = ∆E(f)− V 2(f)− dV (f).

About projections, the first observation is that it projects on the unit ball in Rp

through x 7→ (x1, · · · , xp), into a process which has the same Γ but with a different
drift. The invariant measure for this projection is (1−R)(d−1−p)/2−1dx. This provides
the image measure of the uniform measure on the sphere onto this p-space. For
p = d − 1, then the measure is (1 − R2)−1/2, which is therefore the Riemannian
measure in these coordinates (the unit ball Bd−1 being a local chart for the upper
half-sphere Sd−1. For p = 1, we get the measure (1−x2)(d−1)/2−1, and the associated
process is the symmetric Jacobi operator (1 − x2)∂2 − (d − 1)x∂x, for which the
eigenvectors are the symmetric Jacobi (or Gegenbauer, or ultrasherical) operator
(see below).
One may also observe

(X1 = x2
1+· · ·+x2

p1
, Y2 = x2

p1+1+· · ·+x2
p1+p2

, · · · , Yk = x2
p1+···+pk−1+1+· · ·+x2

p1+···+pk),

with p1 + · · ·+ pk ≤ n.
One has

L(Yi) = −2dYi + 2pi

and
Γ(Yi, Yj) = 4Yi(δij − Yj).

This gives a process on the simplex {Yi ≥ 0,
∑

i Yi ≤ 1}, with invariant measure
the Dirichlet law

Y
p1/2−1

1 Y
p2/2−1

1 · · ·Y pk/2−1
k (1− Y1 − · · · − Yk)pk+1/2−1dY1 · · · dYk

with p1 + · · ·+ pk + pk+1 = d.
Once again, for k = 1 we recover a dissymmetric Jacobi process (see below),
with invariant measure the beta law xa(1 − x)bdx, and eigenvectors the Jacobi
polynomials.
Once again, these Dirichlet laws may be seen as the image of the uniform measure
on the sphere. Moreover, one may represent a random point in Sd−1 as (ρ1U1, · · · , ρkUk),
where (ρ2

1, · · · , ρ2
k) = (Y1, · · · , Yk) which law has just been described, and U1, · · · , Uk

belong to unit spheres in Sp1−1, · · · , Spk−1, and are moreover uniform and inde-
pendent.
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5. Hyperbolic Brownian motion
Although we shall not really use it later, it is worth to mention the third basic
geometric model.
The hyperbolic Laplace is the Riemannian structure on the hyperboloid

Hd = {x2
1 + · · ·+ x2

d + 1 = x2
d+1} ⊂ Rd+1,

when we put on it the Riemannian structure inherited from the quadratic form∑d
1 x

2
i − x2

d+1.
In fact, this hyperboloid has two connected components, and we chose the one with
xx+1 > 0.
On the surface, we have

∑d+1
1 xidxi − xd+1dxd+1 = 0, so that the metric on the

surface, which is
∑

i(dxi)
2 − (dxd+1)2 may be rewritten as

d+1∑
1

(dxi)
2 − (

d+1∑
i

xi
xd+1

dxi)
2,

with x2
d+1 = 1 + r2, where r2 =

∑d
1 x

2
i . That is the metric is

Γ(xi, xj) = δij −
xixj

1 + r2
,

and it’s inverse is given, in this system of coordinates, by

gij = δij + xixj.

We have det(gij) = 1 + r2, and the associated Laplace operator is determined by
Γ and the invariant measure which is 1

(1+r2)1/2
dx, which provides

(4.7) Γ(xi, xi) = δij + xixj, ∆H(xi) = dxi.

It is invariant under the elements of O(d, 1) (leaving invariant the quadratic form∑d
i x

2
i−2

d+1.
This is completely similar to the spherical Laplace operator in the ball.
There are many other representations of this hyperbolic Laplace operator. Through
a change of variable in the unit ball, or in the upper-half space, which are the
most commonly used, essentially because in these representations, the hyperbolic
Laplace operator is conformal to the usual Euclidean one (we say that two operators
are conformal to each other if their carré du champ operators Γ and Γ1 satisfy
Γ = c(x)Γ1, for some function c(x). This property is not preserved through a
change of coordinates.

6. Sturm Liouville operators in dimension 1
On R, all operators may be written as

L = a(x)f ′′ + b(x)f ′.
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Now, when a > 0, one may change variables setting
√
a∂x = ∂y, that is solving the

differential equation dy
dx

= 1√
a(x)

, to translate L into

L1 = ∂2
y + b1(y)∂y.

This operator is always reversible for the measure exp(V (y))dy, with V ′ = b1.The
stochastic process with generator L1 is nothing else than y(ξt)), where ξt has gene-
rator L. So that symmetry is always true, and moreover, up to a change of variables,
there exist only one metric.
On a compact interval, the description of the generator on, say, compactly suppor-
ted functions, is not enough to describe the semigroup. One has to add boundary
conditions. For example, on (0, 1) with Lf = 1

2
f ′′, one has least two choices : the

Dirichlet or the Neuman boundary conditions. It corresponds to the Brownian mo-
tion being killed or reflected at the boundary. In the first case, the eigenvectors are
sinnπx, in the second one cos(nπx). The fact that the description of the opera-
tor on compactly supported functions is enough to describe a unique self-adjoint
operator is called essential self-adjointness. It happens as soon that the space is
complete, or as soon that the drift is too repelling at the boundary. We shall not
enter into such details here since we shall impose the eigenvectors in most cases,
such describing in a intrinsic way the self-adjoint extension we are dealing with,
most of the time Neuman.

7. The three families of orthogonal polynomials in dimension 1
In dimension 1, their exist only three families of diffusion with polynomial eigen-
vectors, up to an affine transformation, corresponding to Hermite, Laguerre and
Jacobi polynomials.

(a) The Ornstein-Uhlenbeck operator (OU in short in what follows) : L(f) = f ′′−
xf ′, symmetric with respect to the gaussian measure γ(dx) = (2π)−1/2e−x

2/2dx.
It has as eigenvectors the Hermite polynomials Hn, which satisfy L(Hn) =
−nHn. Thee Hermite polynomials are the natural b-orthonormal basis of L2(γ)
which is obtained by the standard orthonormalization of the sequence {1, x, x2, · · · , xn · · · }.
The use of complex coordinates may be quite useful. Then, for example, one has
the following representation of the unnormalized Hermite polynomial Hn(x)

Hn(x) = cn

∫
R
(x+ iy)nγ(dy),

where γ(dy) denotes the standard Gaussian measure on R.
To see this, look at the two dimensional Ornestein-Uhlenbeck operator in the
complex plane L(z) = −z, and Γ(z, z) = 0. Then, L(zn) = −nzn. Now, look at
it in real coordinates as L = Lx + Ly. One has

Lx

∫
R
znγ(dy) =

∫
R

Lx(z
n)γ(dy).

19 9 mars 2017



preprint under construction

But, since γ(dy) is the invariant measure for Ly, one also has∫
R

Lyz
nγ(dy) = 0,

from which one also gets

Lx

∫
R
znγ(dy) =

∫
R

Lznγ(dy) = −n
∫
R
znγ(dy),

from which we deduce that
∫
R z

nγ(dy) is an eigenvector of Lx, and therefore
proportional to the Hermite polynomial Hn.
Moreover, the structure of the operator L may also lead to recurrence formulas
for the moments.
This is quite easy in the Ornstein-Uhlenbeck case. One has L(xn) = −nxn +
n(n− 1)xn−2, so that writing

∫
Lxnγ(dx) = 0, one gets∫

xnγ(dx) = (n− 1)

∫
xn−2γ(dx).

This simple trick may be extended far beyond this simple case, for example to
get recurrence formulas for the moments of the spectrum of a symmetric Gaus-
sian matrix, where the recurrence formulas appear to be much more difficult to
obtain.

(b) The Laguerre operator (or squared radial generalized Ornstein–Uhlenbeck ope-
rator) on I = R∗+

La = x
d2

dx2
+ (a− x)

d

dx
, a > 0.

It is symmetric with respect to the measure µa(dx) = Cax
a−1e−x dx. Its eigen-

vector are the Laguerre polynomials (Qn)n, with La(Qn) = −nQn. When a
is a half integer, then if one considers the OU operator in Rn, with generator
L = ∆ −

∑
i xi∂i (that is the sum of one dimensional OU operators acting

separately on each variable), and consider the function R =
∑

i x
2
i , then

L(F (R/2)) = 2La(F )(R/2),

with a = d/2.
Then, the Laguerre operator with parameter d/2 is the image of the d dimen-
sional OU operator.

(c) The Jacobi operator on I = (−1, 1)

Ja,b = (1− x2)
d2

dx2
−
(
a− b+ (a+ b)x

) d
dx

, a, b > 0.

It is symmetric with respect to the measure µa,b(dx) = Ca,b(1 − x)a−1(1 +
x)b−1 dx, The Jacobi polynomials Qn satisfy Ja,b(Qn) = −n(n+ a+ b− 1)Qn.
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In the same way that the Laguerre operator is an image of OU, then the Jacobi
operator for half integers a and b are images of spherical Laplace operator. More
precisely, on the sphere on dimension d, if one considers the function 2

∑p
i=1 x

2
i−

1, with values in (−1, 1), then the image of ∆Sd through it is 4Lp/2,(n−1−p)/2.
In the symmetric case a = b, there exists a simpler representation from the
sphere : namely, looking at the spherical Brownian motion acting on the single
variable x1, one gets directly the Jacobi operator Jn/2,n/2.
Moreover, looking at the Jacobi for a = b = n/2, changing x into y =

√
nx, and

letting n to ∞, then 1
n
Jn/2,n/2 converges to OU. In the same way, one may see

Laguerre operators as limits of dissymmetric Jacobi operators, and indeed, all
the important properties that we want to describe in dimension 1 are concerned
with the Jacobi case (described later).
The complex variable trick used for the Hermite polynomial also works here,
at least in the symmetric case (the non symmetric one is also at hand, but
through much more complicated formulas). For this, set a = b = n/2, where n
is a parameter. The two dimensional Jacobi operator acts on the unit ball as{

Γ(x, x) = 1− x2, Γ(y, y) = 1− y2, Γ(x, y) = −xy
L(x) = −nx,L(y) = −ny

When n is an integer, this is nothing else than the projection of the spherical
Laplace operaor in two dimensions.
Setting y =

√
1− x2t, where t ∈ (−1, 1), it turns out that this operator may

be see as a skew product

Jn/2,n/2,x +
1

1− x2
J(n−1)/2,(n−1)/2,t,

with reversible measure µn/2,n/2(dx)µ(n−1)/2,(n−1)/t(dt).
We just have to check that that

Γ(t, t) =
1− t2

1− x2
,Γ(x, t) = 0, L(t) =

−(n− 1)t

1− x2
.

Then, with z = x+ iy, one has L(z) = −nz, Γ(z, z) = −z2, so that

L(z)p = −p(n+ p− 1)zp.

One may then obtain the representation, when a = b = n/2 and any integer p
for the associated polynomial J (n/2,n/2)

p

J (n/2,n/2)
p = Cp

∫
(−1,1)

(x+ i
√

1− x2t)pµ(n−1)/2,(n−1)/2(dt).
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The construction we made above of the projection of the spherical Brownian motion
on the 2 dimensional unit ball may be extend to larger dimensions.
Indeed, if one considers the projection of the d dimensional spherical Brownian
motion ξt on Sd, it may be decomposed into its projection on ξ(1)

t ∈ (−1, 1), which
is a symmetric Jacobi diffusion with parameter a = b = d/2, and we may then write

ξt = (ξ
(1)
t ,

√
1− (ξ

(1)
t )2ζt, where ζt ∈ Sd−1. The generator ∆Sd in these coordinates

(x, θ) ∈ (−1, 1)× Sd−1 may be written as

∆Sd = Jd/2,d/2,x +
1

1− x2
∆Sd−1 ,θ,

and one may repeat this construction with the Brownian motion on Sd−1, ending up
with a decomposition into embeded skew products of symmetric Jacobi operators.
In particular, this allows to decompose the uniform measure on the sphere into
direct products of Jacobi measures (with decreasing parameters).

8. Diffusions on the simplex
The d dimensional simplex Dd is the set of points {x1, · · · , xd} in Rd such that
xi ≥ 0 and

∑d
1 xi ≤ 1. it could be seen as the set of probability measures on d+ 1

points, and as such plays an important rôle in many areas of probability, statistics
and computer science. We already saw a diffusion process on the simplex as an
image of the sphere. Indeed, there are much more such diffusion processes on the
simplex which have the property that may be diagonalized through orthogonal
polynomials. We already saw how one may construct such operators form the
spherical Laplace operator, with

Γ(xi, xj) = xi(δij − xj),

the values of L(xi) being determined by the value of Γ and the Dirichlet distribu-
tion.
One important property, as we shall see later in Section 5, is that for this Γ and,
with xd+1 = 1−

∑d
I xi, one has, for any i = 1, · · · , d, any j = 1, · · · , d+ 1,

(4.8) Γ(xi, xj) = mijxj,

where mij are degree 1 polynomials (this is obvious for j = 1, · · · , d but not when
j = d + 1). Here, the boundary of the domain Dd is determined by the equation
x1 · · ·xd+1 = 0.
There are many symmetric diffusion operators on the simplex withe the Dirichlet
measure as invariant measure, where we recall that the Dirichlet measure is a
probability measure on Dd with density Cxa11 · · · x

ad+1

d+1 , ai > 1, i = 1, · · · , d+ 1.
Indeed, the simplex is one of the few examples of domains in finite dimension for
which there exist many Γ structures for which the boundary equation (4.8) has
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many different solutions. Namely, one may define a family of metrics depending on
a symmetric (d+ 1)× (d+ 1) matrix A = (Aij) with non negative entries as

(4.9) gpq := ΓA(xp, xq) = −Apqxpxq + δpqxp

d+1∑
k=1

Apkxk, 1 ≤ p ≤ q ≤ d,

where in the previous equation xd+1 stands for 1 − x1 − · · ·xd. The operator is
elliptic on the simplex as soon as, for every p 6= q, Apq 6= 0. One should check that
the value of Aii plays no rôle in the definition of ΓA, and we shall set Aii = 0.
Indeed, one may check that ellipticity is insured as soon as the matrix A is recurrent
in the sense of matrices with non negative entries, that is that for any i 6= j, there
exists some parameter n such that Anij 6= 0.
One may write the operator ΓA as

∑
1≤i<j≤d+1AijΓij, where

with

(4.10) Γij(xp, xq) = xixj[δpq(δpi + δpj)− (δpiδqj + δpjδqi)],

All these metrics satisfy the boundary equation (4.8), as easily checked. Then, for
the reversible Dirichlet measure with parameters (ai), one gets

(4.11) Lij(xp) = (δpi − δpj)(xj(ai + 1)− xi(aj + 1)).

Once again, when the parameters ai are half integers, one has a geometric inter-
pretation for these operators Lij coming from spheres. Again, consider a sphere
SN1 ⊂ Rd, where we chose a partition of the set of indices {I1, · · · , Id+1} with
size |Ii| = pi. Now, for any pair of coordinates (yp, yq) in RN , one considers the
infinitesimal rotation Dpq = yp∂yq − yq∂yp . Then we look at the operator

∆ij =
∑

p∈Ii,q∈Ij

D2
pq.

For this operator, the variables xi =
∑

p∈Ii y
2
p form a closed system, and its image

is 4Lij, where the parameters ai are ai = pi
2
− 1.

9. Symmetric matrices Brownian motion
The linear space of symmetric matrices is an Euclidean space, when endowed with
the norm ‖M‖2 = trace (M2). On this Euclidean space,

Γ(mij,mkl) =
1

2
(δikδjl + δilδjk), L(mij) = 0.

This is the Euclidean Brownian motion on the set of symmetric matrices with the
Euclidean norm trace (M2).
This contains the fact that we look at the Brownian motion on the set of symmetric
matrices. If we start from a symmetric matrix, we stay on the set of symmetric
matrices.
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10. Hermitian matrix Brownian motion.

Γ(zij, zkl) = 0, Γ(zij, z̄kl) =
1

2
(δikδjl + δilδjk).

11. Brownian motion on Riemannian manifold, Laplacians : this is when the
measure is det(Γ)−1/2. We already mentioned this very wide class, and its particular
propert which is its invariance under diffeomorphisms.

12. Brownian motion on semisimple compact Lie groups : the Casimir ope-
rator.
Take a Lie group G (say a compact group of matrices). Then, the Lie algebra
L is the set of matrices A such that etA ∈ G. It is a linear space, stable under
(A,B) 7→ [A,B] = AB −BA.
One associates to A a vector field XA on G by setting

XA(f)(g) = ∂t|t=0f(etAg).

(Left invariant vector fields.)
If A has entries Aij, then, and g has entries mij,

XA(f) =
∑
i,j,k

Aikmkj∂mij
sf.

XA maps polynomials of degree n in the entries mij into polynomials of the same
degree.
We also have right invariant vector fields. A right invariant vector field commutes
with a left invariant one : this reflects the associativity of the multiplication in the
group.
From the definition of the Haar measure µ, (invariant under g 7→ g1g, for any g1 ∈
G), then X∗A = −XA in L2(µ), so that X2

A is symmetric. If (A1, · · · , Ak) span the
Lie algebra, then

∑
kX

2
Ak

is an elliptic operator, symmetric for the Haar measure.
It is always a Laplacian, and maps polynomial in the entries into polynomial in
the entries with the same degree.
Now, if the group is semisimple compact, then there is a natural quadratic form
of the Lie algebra which is defined as such. For A ∈ L, B 7→ [A,B] := ad(A)(B) is
a linear operator on L, and [ad(A), ad(B)] = ad([A,B]. This is a representation of
the Lie algebra. Then, consider the scalar product 〈A,B〉 = trace (ad(A)ad(B)).
One possible definition of semisimple is that this quadratic form is non degenerate.
It turns out that it is then definite negative exactly when G is compact.
It turns out that, for semisimple compact Lie groups, if (A1, · · · , An) is an ortho-
normal basis of L for this quadratic form, then L =

∑
iX

2
Ai

commutes with the
group action, from the right and from the left, and it is independant of the choice
of the basis. This operator is called the Casimir operator. It is therefore a Lapla-
cian, with Riemannian measure the Haar measure, and moreover it has constant
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Ricci curvature 1/4. (Examples of Einstein manifolds). The Casimir operators map
polynomials in the entries into polynomial in the entries, without increasing the
degrees.
Examples of semisimple compact Lie groups are SO(d), SU(d), Sp(d).

13. SO(d) Brownian motion For an orthogonal matrix with entries mij, one gets{
L(mij) = −(d− 1)mij,

Γ(mkl,mqp) = δ(kl)(qp) −mkpmql.

We observe first that if we extract a sub matrix N selecting p lines and q columns,
we obtain a process with the same relations, this time no longer living on the
orthogonal group. This is the matrix Jacobi process of Y. Doumerc, developed by
N. Demni.
Indeed, with this formula, for the projected matrix n (on the set of p× q matrices,
we see that

Γ(log(det(I − nn∗), nij) = −2nij,

and that, if ρ is the density, one also has

Γ(log ρ, nij) = −(d− 1− p− q)nij.

For which we deduce that if there is a density, it has to be (det(I−nn∗))(d−1−p−q)/2,
and in fact the condition is p + q ≤ d, in which case the image is the symmetric
domain nn∗ ≤ Id. When it is not, (for example when the length of the columns are
maximal), then it lives on a sub-manifold, always algebraic. In fact, this process
on p × q matrices to have a density when the condition p + q < d + 1 holds. It
does nor matter too much here if we chose mm∗ or m∗m those matrices having the
same eigenvalues + a number of 0 for the biggest ones.
Observe that with P = det(Id−mm∗) one has

Γ(logP, logP ) = 4(−p+ trace (Id−mm∗)−1)

.
Γ(P, P ) = PQ, where Q is a polynomial in the entries of M . If we just select one
column (or one line), this is the spherical process. One may then look at many
different things.
If we consider the extracted p× q matrix n as before and N = nn∗, one gets a new
operator on symmetric p× p matrices{

L(Nij) = −2dNij + 2qδij

Γ(Nij, Nkl) = δikNjl + δilNjk + δjkNil + δjlNik − 2NikNjl − 2NilNjk

.

Once again, one may consider its spectral measure, and obtain a new operator on
the characteristic polynomial.
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One has to be careful when using formula (3.2) to determine the density with
respect to the Lebesgue measure, since one wants for example to work with a system
of coordinates, that is here Nij with i ≤ j and not all the Nij (taking in account
the symmetric structure of N). In this respect, ∂Nij

Nkl = δikδjl + δilδjk − δijδklδik.

Γ(log ρ,Nij) = L(Nij)−
∑
k≤l

∂Nkl
Γ(Nkl, Nij),

one gets ∑
k≤l

∂Nkl
Γ(Nkl, Nij) = 2(p+ 1)(δij − 2Nij),

Γ(log ρ,Nij) = 2(q − p− 1)δij + 2(2(1 + p)− d)Nijs,

while
Γ(log det(Id−N), Nij) = −4Nij.

We see that it is only when q = p + 1 that we have a nice density det(I − N)α.
The problem here comes from the fact that the Lebesgue measure does not project
nicely under n 7→ nn∗.
The problem comes from the projection of the Lebesgue measure. How to find it ?
We consider the flat brownian motion{

L(mij) = 0,

Γ(mij,mkl) = δikδjl.

in dimension p× q, and consider as before Mij =
∑

qmipmjp (M = mm∗). Then

Γ(Nij, Npq) = δipNjq + δiqNjp + δjpNiq + δjqNip.

with L(Nij) = 2qδij.
Then, with Nij, i ≤ j as a system of coordinates, one has∑

a≤b

∂Nab
Γ(Nab, Nij) = 2(p+ 1)δij

and therefore, of it has a density

Γ(log ρ,Nij) = 2(q − p− 1)δij.

But, Γ(log det(N), Nij) = 4δij, and this gives the image measure of the Haar mea-
sure det(N)(q−p−1)/2, which is locally integrable as soon as q−p > −1 (for integers,
it gives q ≥ p, which was to be expected, since otherwise, the image would be
carried by sets of measure 0, they is the set of matrices with determinant 0). To
make things rigorous, one should replace the Euclidean Brownian motion by the
Ornstein-Uhlenbeck one.
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We could have done directly the same computation with the Γ induced from the
SO(d) one. We obtain

Γ(log detM,Mij) = 4(δij −Nij).

With
Γ(log det(Id−M),Mij) = −4Mij,

then one gets
ρ = det(M)(q−p−1)/2det(Id−N)(d+q−1−p)/2.

14. SU(d) Brownian motion
L(zij) = −(d2 − 1)zij,

Γ(zij, zkl) = zijzkl − dzilzkj,
Γ(zij, z̄kl) = dδikδjl − zij z̄kl

One may product the same kind of images that the SO(d) case. There are however
some subtle differences. We also would do the same for SP (d).

5 Models with polynomial eigenvectors

It may happen, as it is the case for the Ornstein-Uhlenbeck operator, and also for the
Laguerre and Jacobi ones, that the generator may be diagonalized in a complete system
of polynomials, which are therefore orthogonal as eigenvectors of a symmetric operator
with different eigenvalues.

Indeed, in dimension one, these 3 examples are the only ones which satisfy this pro-
perty up to affine transformations. In higher dimension, The situation appears in many
situations, for example when dealing with the sphere, or as we shall se later with compact
Lie groups.

In this part, we want to address the problem of describing the diffusions, symmetric
in L2(µ) which have the property that they admit a complete system of polynomial
eigenvectors.

5.1 A few preliminary remarks

1. First, we shall work in some open domain Ω ⊂ Rn. A similar problem makes sense
in an algebraic manifold (and we shall encounter some of them, for example the
sphere), but the basic analysis is then much more complicated.

2. Then, we shall restrict the analysis to the case where µ is a probability measure
(il we want polynomials to be integrable), moreover with a density with respect to
the Lebesgue measure. Moreover, we shall restrict the analysis to the case where
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the polynomials are dense in L2(µ). It is enough for this that the measure µ has
an exponential moment (there exists ε > 0 such that

∫
exp(ε|x|)dµ(x) < ∞. Of

course, it is always satisfied when Ω is bounded.
3. We want to be able to rank the polynomials with respect to some order. For this, if

we are in Rd, we chose a sequence of positive integers (a1, · · · , ad) and decide that
the degree of xn1

1 · · ·x
nd
d is

∑
i aini. Then, we denote Pn the space of polynomials

with total degree less than n, and we have Pn ⊂ Pn+1, ∪nPn = P , where P is te
space of all polynomials. Moreover, Pn is a finite dimensional space.
Then, one wants for each n to find a orthonormal basis of Pn which are eigenvectors
for L.
One may restrict of course to the case where all the ai have no common factor.
It could be also interesting to consider irrational degrees, but then the analysis
becomes more complicated.
It will be important in many cases not to use the usual degrees (ai = 1, ∀i),
although we shall mainly restrict to this case, whenever the arguments are easily
generalizable to the general case.

4. There are in general many bases of orthogonal polynomials, since the dimension of
Pn+1	Pn is larger than 1. But it many cases, there will be a unique such basis of
eigenvectors of L (when the eigenvalues are simple) , so that we shall chose indeed
a specific basis of orthogonal polynomials for L2(µ).

5. Since L maps Pn into itself, it maps P1 into Pai into itself and Pai+aj also.
Therefore, if the generator is

∑
ij g

ij∂2
ij +

∑
i b
i∂i, since bi = L(xi) and gij =

Γ(xi, xj), bi are polynomials with degree at most ai and gij are polynomials with
degree at most i+ j.

6. If we have an operator L which maps Pn into Pn for any n, and which is symmetric
on Pn for the L2(µ) structure (which supposes in fact that the integration by
parts formula is valid for a pair of polynomials), then, one may find for each n a
basis of eigenvectors for L on Pn. Then, we may construct a family of orthogonal
polynomials which are eigenvectors for L.

5.2 The boundary equation

We shall restrict for simplicity to the case where Ω is bounded (this condition may be
relaxed in some of the items below), with moreover a piecewise C1 boundary. (Indeed, the
only restriction on the boundary is that the Stokes formula is valid on Ω). We shall loose
no generality if we just consider piecewise C∞ boundary, due to the next result.

We then consider the following data : (Ω,L, ρ), where Ω is a bounded open set with
the above piecewise smooth boundary, L is an elliptic diffusion operator on Ω, and ρ is
the density with respect to the Lebesgue measure of the reversible probability measure
for L (Recall that this amounts to describe indeed (Ω,Γ, ρ).)
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If we may find some weighted degree for which the operator admits such a polynomial
basis of eigenvectors, we shall call that a polynomial diffusion model, PDM in short.

If we restrict out attention to bounded domains Ω ⊂ Rd, with piecewise C1 boundary,
non degenerate matrix g and finite measure, the possibility of having this situation is quite
restrictive and imposes strong conditions on the domain Ω. In particular, the boundary
must be an algebraic surface.

Before going into the details, let us make some precision. We shall say that ∂Ω is an
algebraic set with reduced equation {P1 · · ·Pk = 0} if

1. Each polynomial Pi is a real polynomial, irreducible in the complex field.
2. For each regular point x ∈ ∂Ω, there exists a neighborhood V(x) which contains x

and a unique i such that V(x) ∩ ∂Ω = V(x) ∩ {Pi = 0}.
3. For i = 1 · · · k, there exist a regular point x ∈ ∂Ω such that Pi(x) = 0.

Then, we have the following

Theorem 5.1. For any bounded polynomial model with a piecewize smooth boundary, one
has

1. The boundary ∂Ω is included in an algebraic surface with reduced equation {P = 0},
where P is a polynomial which may we written as P1 · · ·Pk, where the polynomials
Pi are real, and complex irreducible.

2. The polynomial P divides det(gij) (that we write det(Γ) in what follows, and which
is a polynomial with degree at most 2

∑
i ai).

3. For each irreducible polynomial Pr appearing in the equation of the boundary, there
exist polynomials Li,r with degree at most ai such that

(5.12) ∀i = 1, · · · , d,
∑
j

gij∂ logPr = Li,r.

4. Let Ω be a bounded set, with boundary described by a reduced polynomial equation
{P1 · · ·Pk = 0}, such that there exist a solution (gij, Li,k) to equation (5.12) with
(gij) positive definite in Ω. Call Γ(f, f) =

∑
ij g

ij∂if∂jf the associated squared field
operator. Then for any choice of real numbers {α1, · · · , αk} such that Pα1

1 · · ·P
αk
k

is integrable over Ω for the Lebesgue measure, setting

ρα1,··· ,αk
(dx) = Cα1,··· ,αk

Pα1
1 · · ·P

αk
k dx,

where Cα1,··· ,αk
is a normalizing constant, then (Ω,Γ, ρα1,··· ,αk

) is a PDM.
5. When P = Cdet(Γ), that is when those 2 polynomials have the same degree, then

there are no other measures µ for which (Ω,Γ, µ) is a PDM.
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6. The general form of the measure is the following.
Suppose that the determinant ∆ of (gij) writes ∆ = Pm1

1 · · ·Pmp
p , where Pi are

real irreducible. Let J the set of indices i ∈ {1, · · · , p} such that Pi is complex
reducible. Then, there exist real constants (αi, βj), and some polynomial Q with
deg(Q) ≤ 2

∑
i ai − deg(∆), such that

(5.13) ρ =
∏
i

|∆i|αi exp
( Q

∆m1−1
1 · · ·∆mp−1

p

+
∑
j∈J

βj arctan
Ij
Rj

)
.

Remark 5.2. Equation (5.12), that we shall call the boundary equation (not to be confused
with the equation of the boundary), may be written in a more compact form Γ(xi, logPr) =
Li,r. Thanks to the fact that each polynomial Pr is irreducible, this is also equivalent to
the fact that Γ(xi, logP ) = Li, for a family Li of polynomials with degree at most 1.

Remark 5.3. In the non compact case, the boundary equation and the form of the measure
is still valid, smooth functions with compact support are dense in the L2 space. Then, the
boundary may not have maximal degree.

Remark 5.4. In the compact case, we know no examples where the factors of the deter-
minant which do not appear in the boundary polynomial may appear in the measures.

5.3 Examples

We shall see how many such polynomial models may be constructed from Lie group
action : images of SO(d), SU(d), the matrix Jacobi processes , the simplex, the balls, the
matrix simplex, the eigenvalues of Gaussian matrices (to be seen below in more details),
etc.

5.4 Soukhanov’s theorem

For the natural degree, it asserts that whenever the degree of the boundary is maximal
(that is 2d), then the metric is the product of Einstein metrics. One may not however
exclude that these metrics may have negative Ricci curvature, although we only know
examples with non negative Ricci. The proof is quite technical, but relies on a simple but
important observation. The boundary equation may be translated in the following fact.
Near a regular point of the boundary, one may consider the double cover of Ω, that is the
surface with equation Z2 = P (X), where {P (X) = 0} is the equation of the boundary.
Then, the metric g may be lifted into a smooth metric on this surface, invariant under
Z 7→ −Z. The Ricci curvature may then be expressed as rational functions of degree 0,
which may be infinite only on the set ∆ = 0, where ∆ is the determinant of the metric.
If the boundary has maximal degree, then this curvature may not be infinite on this set,
and therefore it may be expressed as polynomials of degree 0, that is constants.

It remains some work to decompose the space into product of spaces of constant Ricci
curvature, which may be done through the diagonalization of the Ricci tensor.
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5.5 Consequences of the Boundary equation

1. Identification of image measures. We shall many examples where the image
measure is of the form CP a1

1 · · ·P
ak
k dx, where P1 · · ·Pk = 0 is the reduced equation

of the boundary.
However, in a polynomial model, whenever the boundary is not of maximal degree
(or more generally when there exists some factors in det(Γ) which does not appear
in the boundary equation), there could be more general invariant measures for a
PDM, and therefore for an image measure. In the bounded case, we never observed
this phenomena up to now.

2. h transforms
When Lh = λh with h > 0, then L(h)(f) = 1

h
L(fh)−λf is a generator of a Markov

process. If h→ 0 at the boundary of Ω, the operator L(h) may be interpreted as a
conditioning of Xt) to stay for ever in Ω.
If L is a polynomial model, and when the measure is ρ = P a1

1 · · ·P
ak
k , We have

Γ(xi, logPk) = Li,k,

with Li,k degree ai. Then, with ck =
∑

i ∂iLi,k. and with h = 1/ρ,

L(h) = −(
∑
k

αkck)h.

As soon as the density ρ os infinite at the boundary of the domain (and this is
the case whenever L is a Laplace operator), then we get a conditioning result.
This covers all the cases mentioned above (even in many non bounded and infinite
measure cases, where the boundary equation appears to be valid).
For example, let us mention a few consequences
(a) A real Brownian motion conditioned to never reach 0 has the law of the norm

of a three dimensional Brownian motion
(b) The same is true for a Ornstein-Uhlenbeck process
(c) A two dimensional Brownian motion conditionned to never reach the boudaries

of an equilateral triangle has the law of the spectrum of an SU(3) Brownian
matrix (through a natural diffeomorphism).

(d) The spherical Brownian motion on Sd conditioned to never reach the an equator
has the law of the projection on Sd of a Sd+2 Brownian motion

3. Spectral measures.

6 Spectral measures, Dyson processes and principal
value decompositions

We propose in this section a method which leads to simple and intrinsic computations
on spectral measures in various models. The central idea is that, in order to deal with
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empirical measures for some finite point process in Rn, that is the symmetric functions
of some random system of points (λ1, · · · , λn), it is often more convenient to use the
elementary symmetric functions of those variables, in other words to use the characteristic
polynomial P (X) =

∏
(X − λi). Now, if we are dealing with some diffusion process, we

look at this polynomial (or more precisely the coefficients of this polynomial) as a process.

6.1 Polynomial with Brownian roots

This is the simplest case, where the computations are easy to deal with. It allows to
perform some basic computations that may be used in a much wider context.

Start with a polynomial with Brownian roots.

P (X) =
n∏
i=1

(X − xi) =
n∑
i=0

aiX
i,

such that (−1)iai(x1, · · · , xn) are the elementary symmetric functions. If we want to des-
cribe the image of the Laplace operator ∆ on Rn under symmetric functions of (x1, · · · , xn),
we may look at smooth functions F (a0, · · · , an−1). At least in the Weyl chamber {x1 <
x2 · · · < xn}, the application (x1, · · · , xn) 7→ Φ(x1, · · · , xn) = (a0, · · · , an−1) is a local dif-
feomorphism. We first have to look at the image of the Lebesgue measure dx = dx1 · · · dxn
under Φ. For this, let us introduce the discriminant.

Resultant, discriminant

For two monic polynomials P (X) =
∑n

i=0 aiX
i and Q(X) =

∑p
i=0 biX

i, the resul-
tant R(P,Q) is a polynomial in the coefficients (a0, · · · , an−1, b0, · · · , bp−1) which vanishes
exactly when P and Q have a common root (in the complex plane). Indeed, R(P,Q) is
the determinant of the n× p Sylvester matrix

1 an−1 an−2 · · · a0 0 · · · 0
0 1 an−1 · · · a1 a0 · · · 0
0 0 1 · · · a2 a1 · · · 0
· · · · · · · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · ap−2 · · · a1 a0

1 bp−1 bp−2 · · · b0 0 · · · 0
0 1 bp−1 · · · b1 b0 · · · 0
0 0 1 · · · b2 b1 · · · 0
· · · · · · · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · b1 b0


It can be viewed as the determinant of the following system of linear equations in the
unknown variables {1, X, · · · , Xn+p−1} :

{P (X) = 0, XP (X) = 0, · · · , Xp−1P (X) = 0, Q(X) = 0, XQ(X) = 0, · · · , Xn−1Q(X) = 0}.
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It turns out that, when P (X) =
∏

i(X − xi) and Q(X) =
∏

j(X − yj), then R(P,Q) =∏
i,j(xi − yi).

The discriminant discr(P ) is D(P ) = (−1)n(n−1)/2R(P, P ′) and expresses a necessary
and sufficient condition for P to have a double root. Then, when P (X) =

∏
(X−xi), one

has discr(P ) =
∏

i<j(xi − xj)2.

Proposition 6.1. The image measure of dx under Φ is

dµ0 = n!|discr(P )|−1/21lD>0da0 · · · dan−1,

where D is the connected component of the set {discr(P ) > 0} where all the roots of the
polynomial P are real.

Proof. — By induction on the degree n.

Proposition 6.2.

1. For any X ∈ R, ∆(P (X)) = 0

2. For any (X, Y ) ∈ R2,

(6.14) Γ(log(P (X), logP (Y )) =
1

Y −X

(P ′(X)

P (X)
− P ′(Y )

P (Y )

)
.

Proof. — The first assertion is immediate, since every function ai is an harmonic function
on Rn ( as a polynomial of degree 1 in any coordinate xi).

For the second, one has

Γ(logP (X), logP (Y )) =
∑
i

∂xi logP (X)∂xi logP (Y ) =
∑
i

1

(X − xi)(Y − xi)
.

But
1

(X − xi)(Y − xi)
=

1

Y −X
(

1

X − xi
− 1

Y − xi
)

and ∑
i

1

(X − xi)(Y − xi)
=

1

Y −X

(P ′(X)

P (X)
− P ′(Y )

P (Y )

)
.

Remark 6.3. The metric structure is then characterized by

Γ(P (X), P (Y )) =
1

Y −X
(P ′(X)P (Y )− P ′(Y )P (X)).

This metric structure reflects exactly the flat Euclidean structure of the variables (xi).s
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Corollary 6.4. One has
1. discr(P ) = det(Γ(ai, aj)).
2. For any i ∈ {0, · · · , n− 1},

∑
j Γ(ai, aj)∂aj log discr(P ) = 2

∑
j ∂ajΓ(ai, aj).

3. For any i ∈ {0, · · · , n− 1},
∑

i,j X
iΓ(ai, aj)∂aj log discr(P ) = −P ′′(X).

Proposition 6.5. Γ(P, log discr(P )) = −P ′′.
If we replace Brownian motions by Ornstein Uhlenbeck operators, then, same Γ

and

LOU(P ) = −
∑

i xi∂iP =
∑

i(n− i)aiX i = −nP (X) +XP ′(X).

And for Spherical Laplace operator

ΓS(logP (X), logP (Y )) =
1

Y −X

(P ′(X)

P (X)
− P ′(Y )

P (Y )

)
−
(
n−XP ′(X)

P (X)

)(
n− Y P

′(Y )

P (Y )

)
∆S(P (X)) = −2n(n− 1)P (X) + 3(n− 1)XP ′(X)−X2P ′′(X).

6.2 Spectral measures for real symmetric Brownian or OU ma-
trices : the characteristic polynomial process.

Starting from the Γ and L on the entries of a matrix, one may look at the characte-
ristic polynomial P (X) which turns out to be det(X −M). From this, one sees that the
coefficients of P (X) are polynomials in the entries of M .

Moreover, in order to compute its action on P (X), we use the following properties,
which are direct consequences of Cramer’s formulae. Looking at det(M), and writing
(m−1

ij ) the entries of the inverse matrix M = (mij), one has{
∂mij

log det(M) = m−1
ji

∂mkl
m−1
ij = −m−1

ik m
−1
kj

.

For the Brownian motion on the Euclidean space of symmetric matrices (that is endo-
wed with the scalar product 〈M.,N〉 = trace (MN)), we consider P (X) = det(XId−M).
We haves

1. Γ(logP (X), logP (Y )) = 1
Y−X

(
P ′(X)
P (X)

− P ′(Y )
P (Y )

)
2. LP (X) = −1

2
P ′′.

From the previous analysis, we see that the measure is the Lebesgue measure in the
dai, C

∏
|λi − λj| in the Weyl Chamber.
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6.3 Spectral measures for Hermitian matrices

Under the real form (
M A
−A M

)
Γ(logP (X), logP (Y )) = 2trace (U(X)U(Y )) =

2

Y −X
(
P ′(X)

P (X)
− P ′(Y )

P (Y )
).

L(P (X)) =
3

2

P ′(X)2

P (X)
− 2P ′′(X).

This implies that P = P 2
1 almost surely, and in fact

(6.15) Γ(logP1(X), logP1(Y )) =
1

Y −X

(P ′1(X)

P1(X)
− P ′1(Y )

P1(Y )

)
, L(P1) = −P ′′1 .

Measure
∏
|λi − λj|2.

6.4 Symplectic matrices (symmetric on quaternions)

Real form

M =


M A1 A2 A3

−A1 M A3 −A2

−A2 −A3 M A1

−A3 A2 −A1 M


Same as before, and now

Γ
(
P (X), P (Y )

)
=

4

Y −X
(
P ′(X)P (Y )− P ′(Y )P (X)

)
,

LP =
9

2

P ′2

P
− 5P ′′.

Shows that P = P 4
1 , and for P1, same grad as before and LP1 = −2P ′′1 , provides

measure
C
∏
|λi − λj|4

6.5 Spectral measures on Clifford algebras

(This will be detailed in the talk of M. Zani).

A general Clifford algebra may be constructed from a finite set E, for which we
construct a vector space with basis ωA, where A ⊂ E.
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E = {1, · · · , n}, {ωA, A ⊂ E}. And ωAωB = (A|B)ωA∆B, where A∆B denotes the
symmetric difference and (A|B) ∈ {−1, 1}.

For Clifford algebras, the multiplication is associative and then (A|B) =
∏

i∈A,j∈B(i|j).
For the standard Clifford algebra,

(i|i) = −1, (i|j)(j|i) = −1(i 6= j).

With this structure, one constructs real symmetric matrices, defined as block matrices

M =
(
MA∆B

)
with (MA)t = (A|A)MA.

(When #E = 2, this corresponds to the real form of Hermitian matrices, when #E =
3, this corresponds to quaternionic matrices.)

BM on such matrices is described by

(6.16) Γ(MA
ij ,M

B
kl ) =

1

2
δA,B(δikδjl + (A|A)δilδjk),L(MA

ij ) = 0.

It turns out that looking at the spectral measure process, one finds 16 different cases :
this in fact reflects Bott’s periodicity, and so one is able to recover this purely algebra
theorem through the analysis of the process. Moreover, one also is able to describe the
multiplicity of the eigenvalues of such matrices just by looking at the generator of the
characteristic polynomial.

With U(X) = (M −XId)−1,

L(P )

P
= Γ(logP )− 1

2

(∑
A⊂E

(A|A)
)

(
P ′2

P 2
− P ′′

P
)− 2p−1

∑
C⊂E

(C|C)H(C)
(
traceU(X)C

)2
,

where
H(C) =

∑
A⊂E

(A|C)(C|A).

Not always a process

LP
P

=

(2p + 22m(−1)m)
(
P ′2

P 2 − P ′′

P

)
− 1

2
P ′2

P 2 when p = |E| = 4m+ 2

(2p + 22m−1(−1)m+1)
(
P ′2

P 2 − P ′′

P

)
− 1

2
P ′2

P 2 when p = |E| = 4m

Consequence P (X) = Q(X)a, where Q is a polynomial, where
a = 24q, when p = 8q

a = 24q+2, when p = 8q + 2

a = 24q+3, when p = 8q + 4

a = 24q+3, when p = 8q + 6
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Then, we see some 8 periodicity appearing : this is Bott’s periodicity

d dimension of the irreducible spaces, β exponent in the measure, α multiplicity of the
roots.

|E| structure d α β

Cl(1) C 2 2 2
Cl(2) H 4 4 4
Cl(3) H⊕H 4 4 4
Cl(4) H[2] 8 8 4
Cl(5) C[4] 8 8 2
Cl(6) R[8] 8 8 1
Cl(7) R[8]⊕ R[8] 8 8 1
Cl(8) R[16] 16 16 1

CL(p+ 8) = R[16]⊗ CL(p).

There are other algebraic structures on which one may perform such computations.
The most important one may be the octonion structure, since octonions play a central
rôle in many parts of mathematics (exceptional Lie groups, exceptional finite groups,
exceptional root systems, exceptional symmetric cones and Jordan algebras, paralelizables
spheres, etc). S. Li made the computations in this case, which appear to be much more
complicated, due to the fact that the algebra is not associative, and has no natural matrix
representation.

6.6 Spectral measures on SO(d)

We may perform the same computation for the Brownian motion on SO(d), that is
when the generator is the Casimir operator.

Γ(P (X), P (Y )) = d
XY

1−XY
P (X)P (Y )− 1

1−XY

(
XP ′(X)P (Y ) + Y P ′(Y )P (X)

)
+

1

Y −X

(
Y 2P ′(Y )P (X)−X2P ′(X)P (Y )

)
.

with
L(logP ) = (d−XP ′

P
)(1−XP ′

P
) +

1

1−X2
(2X

P ′

P
− d).

From which

L(P ) = −d X2

1−X2
+XP ′(1− d+

2

1−X2
) +X2P ′′.

Observe that this operator acts on real polynomials such that XdP (1/X) = (−1)dP (X),
which summarizes the fact that the eigenvalues lie on the unit circle and the determinant
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is 1. Moreover, the metric structure is the flat (Euclidean) one, with those restrictions.
One has to considers two cases, the odd or even dimension.

For the even case (d = 2d1), one may consider a Brownian motion (λ1, · · · , λd1) in Rd1

and look at the polynomial

P (X) =

d1∏
k=1

(X − eiλk)(X − e−iλk).

Then, the carré du champ for P (X) is the same as before. For the odd case, we may
consider the same as before multiplied by (X − 1).

Let us look now at the spectral measures. First, the spectral measure of M ∈ SO(d) :
if P (X) = det(M −X), one has

Γ(P (X), P (Y )) = d
XY

1−XY
P (X)P (Y )− 1

1−XY

(
XP ′(X)P (Y ) + Y P ′(Y )P (X)

)
+

1

Y −X

(
Y 2P ′(Y )P (X)−X2P ′(X)P (Y )

)
.

with
L(logP ) = (d−XP ′

P
)(1−XP ′

P
) +

1

1−X2
(2X

P ′

P
− d).

From which

L(P ) = −d X2

1−X2
+XP ′(1− d+

2

1−X2
) +X2P ′′.

Observe that this operator acts on real polynomials such that XdP (1/X) = (−1)dP (X),
which summarizes the fact that the eigenvalues lie on the unit circle and the determinant
is 1.

It is far easier to work with the characteristic polynomial P than with the spectral
measure itself. Indeed, we have to take in account the fact that the eigenvalues are com-
plex numbers with modulus one, moreover conjugate to each other. Beyond this, in odd
dimension, one is always 1 and there may be an even number of eigenvalues which are
−1 (this happens with probability 0 indeed). So, if we want to use the spectral values are
coordinates for the spectrum, we should first remove the one in odd dimension, and then
chose λi = eiθi , with 0 < θ1 < · · · θk < π as coordinates. Then, in this Weyl chamber, one
has

Γ(λi, λj) = −δijλ2
i ,Γ(λi, λ̄j) = δij.

That is the metric is the one of independent Brownian motion on the circle.

For the spectrum, one has, for this symmetric projected operator N in dimension p×p,
with P = det(N −XId)

38 9 mars 2017



preprint under construction

L logP (X) = −2dtrace (
N

N −XId)
) + 2qtrace (

I

N −XId
)

−2trace (
I

N −XId
)trace (

N

N −XId
)

−2trace (
N

(N −XId)2
) + 2trace (

N2

(N −XId)2
) + 2

(
trace (

N

N −X
)
)2
,

while

Γ(logP (X), logP (Y )) = 4trace (
N

(N −XId)(N − Y Id)
)−4trace (

N2

(N −XId)(N − Y Id)
).

Now, we have

trace ( I
N−XId

) = −P ′

P

trace ( N
N−XId

) = p−X P ′

P

trace ( N
(N−XId)2

) = −P ′

P
+X(P

′2

P 2 − P ′′

P
)

trace ( N2

(N−XId)2
) = p− 2X P ′

P
+X2(P

′2

P 2 − P ′′

P
)

trace ( N
(N−XId)(N−Y Id)

) = 1
X−Y (Y P ′

P
(Y )−X P ′

P
(X))

trace ( N2

(N−XId)(N−Y Id)
) = p+ 1

X−Y (Y 2 P ′

P
(Y )−X2 P ′

P
(X))

When computing L(P (X)) = P (X)
(
L(log(P (X)) + Γ(logP (X), logP (X))

)
, then

some terms of the form X P ′2

P
and X2 P ′2

P
should appear. Indeed, they cancel, whatever the

parameters. This is fortunate, since then we know that if L(P (X)) and Γ(P (X), P (Y ))
have to depend only on P (X) and P (Y ), the resulting expressions have to be polynomials.

And indeed, it is the case. We shall see on some other models examples where it is not
the case and what it tells us about the structure of the underlying matrices.

We have

Γ(logP (X), logP (Y )) = 4
(
− p+

1

X − Y
(
Y (1− Y )

P ′(Y )

P (Y )
−X(1−X)

P ′(X)

P (X)

))
.

L(P ) = 2p(p− 1− d)P + 2P ′(X(d+ 2− 2p) + p− q − 1) + 2X(X − 1)P ′′.
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We see that expected, this vanishes on P (1) = 0 for d = p+q−1. When d = p+q−1, the
process lives on the set where {P (1) = 0}, that is the boundary of our domain. Does the
process exist when p+q−2 < d < p+q−1 ? Does it live on {P (1) = 0} ? Apparently not :
when d = p + q − 1− α, L(P (1)) = −αP ′(1) on {P (1) = 0}. So that the process cannot
live on this set unless it also lives on {P ′(1) = 0}. It seems that for λ ∈ (p+q−2, p+q−1)
it happens the same phenomenon that on the spheres, that is symmetry breaking. Now,
it would be good to see what happens when d = p+ q− 2. Does the measure concentrates
on {P (1) = 0} ∩ {P ′(1) = 0}. And beyond ?

An idea would be to understand the conditional law of m given the spectrum of mm∗,
that is it’s polar decomposition.

6.7 Spectral measures on SU(d).

Performing the same computation as before, but now for the Brownian motion on
SU(d), we get

Γ(P (X), P (Y )) = XY
(
P ′(X)P ′(Y ) + d

P ′(X)P (Y )− P ′(Y )P (X)

X − Y

)
.

(Much simpler than in the orthogonal case)

L(P ) = d(d2 − 1− λ)P + (λ+ 2− 2d2)XP ′ + (1 + d)X2P ′′.

The carré du champ reflects the Euclidean structure for the roots. It is the same as
the carré du champ of an Euclidean Brownian (λ1, · · · , λd)motion in nRd restricted to the
set
∑

i λi = 0, seen through the polynomial P (X) =
∏

(X − eiλk).

6.8 Principal values for Brownian matrices

We may also consider a Brownian motion on complex or real matrices, and look at it’s
principal values, hat is the eigenvalues s of

M = mm∗, Mij =
∑
k

mikm̄jk.

or
M = m∗m, Mij =

∑
k

m̄kimkj.

We have
L(Mij) = 4dδij,Γ(Mij,Mkl) = 2(δjkMil + δilMkj),

the rest follows from M̄ij = Mji. Invariant measure det(M)d−1dM .
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Then, M = V N , V unitary, N Hermitian. Writing N = V DV ∗, where V unitary and
D = diag(xi), then Now we have Γ and L for all the elements in the polar decomposition
of the complex matrix m at V = U = Id,

Γ(Uij, Ukl) = −2
x2
i + x2

j

(x2
i − x2

j)
2
δilδjk, Γ(Uij, Ukl) = 2

x2
i + x2

j

(x2
i − x2

j)
2
δikδjl,

L(Uij) = L(U ij) = −2
∑
k 6=i

x2
i + x2

k

(x2
i − x2

k)
2
δij,

Γ(xi, xj) = δij, L(xi) =
1

xi
+ 4xi

∑
j 6=i

1

x2
i − x2

j

,

Γ(Nij, Nkl) = 2
x2
i + x2

j

(xi + xj)2
δilδjk, L(Nij) = 4

∑
r

xr
(xi + xr)2

δij,

Γ(Vij, Vkl) = − 4

(xi + xj)2
δilδjk, Γ(Vij, V kl) =

4

(xi + xj)2
δikδjl,

L(Vij) = L(V ij) = −4
∑
r

1

(xi + xr)2
δij,

Γ(Vij, xk) = 0, Γ(Uij, xk) = 0, Γ(Vij, Ukl) =
2

(xi + xj)2
δilδjk.

By the property of invariance under the transformation (V,N)→ (V0U0V U
∗
0 , (U0U)D(U0U)∗),

we have at arbitrary point V, U

Γ(Uij, Ukl)(U) =
∑

UipUkqΓ(Upj, Uql)(Id),

Γ(Vij, Vkl)(V ) =
∑

(V U)ip(V U)kqŪjrŪlsΓ(Vpr, Vqs)(Id),

L(Uij) =
∑

UipL(Upj), L(Ūij) = ŪipL(Ūpj),

other terms such as Γ(Vij, Ukl), L(Vij) follow the same procedure. In the end, we get the
conclusion in the proposition.

SO(d) : For an orthogonal matrix with entries mij, one gets{
L(mij) = −(d− 1)mij,

Γ(mkl,mqp) = δ(kl)(qp) −mkpmql.

SU(d) : 
L(zij) = −(d2 − 1)zij,

Γ(zij, zkl) = zijzkl − dzilzkj,
Γ(zij, z̄kl) = dδikδjl − zij z̄kl
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In those two cases, one may project on extracted p × q matrices, as we did for the
sphere.

Observe in the orthogonal case that if we project on one line, we obtain the spherical
brownian motion. This is no longer the case if we project the unitary brownian motion.
Even projecting on one coordinate does not give quite the projection in two dimensions
of any spherical brownian motion.

7 The hypergroup property and Gasper’s theorem

7.1 Generalities : The Markov sequence problem (MSP)

Let (Ω,F , P ) be a probability space, where a orthonormal basis B for L2(P ) is given :
B = {f0 = 1, f1, · · · , fn, · · · }.

A Markov operator K is an operator mapping bounded measurable functions to
bounded measurable functions, such that K(1) = 1 and which is positivity preserving.
It is in general represented by a kernel K(x, dy) of probability measures K(f)(x) =∫
f(y)K(x, dy).

We are looking for such Markov operators which have the basis B has eigenvectors :
K(fn) = λnfn. It is prettily seen that that λ0 = 1 and that |λi| ≤ 1, for any i. Such a
sequence (λn) is called a Markov sequence

If the series
∑

i λ
2
i is convergent, the series k(x, y) =

∑
i λifi(x)fi(y) is convergent in

L2(µ⊗ µ), and the kernel K(x, dy) may be represented as k(x, y)µ(dy).

The MSP ask for the description of all Markov sequences. The set of Markov sequences
is compact (for the simple convergence topology on the Markov sequences), and convex.
It is therefore ebnough to describe the extremal Markov sequences.

We suppose now that Ω is embedded with some topology for which the fi are conti-
nuous functions. let x0 ∈ Ω.

We say that (Ω,F , P,B) have the semigroup property at the point x0 if, for any x ∈ Ω,
fn(x)
fn(x0)

is a Markov sequence. If such is the case, then those sequences are the extremal
Markov sequences and for any Markov sequnce, there exist a probaility measure ν on Ω
such that, for any n,

λn =

∫
Ω

fn(x)

fn(x0)
ν(dx).

When the hypergroup property holds at some point x0, then one may consider the 3
variables kernel

K(x, y, z) =
∑
n

fn(x)fn(y)fn(z)

fn(x0)
,

which is not necessarily convergent in L2(µ⊗3) ; but when it is, it is non negative. What
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makes sense in general is the measure K(x, y, z)µ(dx), (as a bivariate kernel) or the
measure K(x, y, z)µ(dy)µ(dx) (as a one variable kernel).

The most common example is the series cos(nx) on (0, π), where µ is the (normalized)
Lebesgue measure on (0nπ). Then, K(f)(x) = 1

2
(f(x+ y) + f(x− y)) is a Markov kernel

(here, x + y and x − y have to be pulled back if necessary to (0, π) by 2π periodicity
and symmetry around 0). It is a Markov operator with Markov sequence cos(ny). The
hypergroup property holds at the point x0 = 0. Of course, in this example, the series
providing the density kernel k(x, y) is not convergent.

7.2 Different aspects of the hypergroup property

1. Multiplication formulas fn(x)fn(y) =
∫
fn(z)K(x, y, z)µ(dz). In the above example,

this is the multiplication formula for the cosine function.
2. Bivariate measures on product (copules in statistics)
3. Wave equations. It is often the case that the functions fn are eigenvectors of some

operator L with eigenvalues µn. Then, a Markov density kernel k(x, y) is a solution
of the equation Lxk = Lyk. Then, the hypergroup property translates into the
following fact.
The solutions of the equation LxF = LyF , on Ω × Ω, with boundary condition
F (., x0) := δx is positive. Another reformulation is that any solution of LxF = LyF
starting from a non negative function at the level x = x0 is non negative on Ω×Ω.
Since the operator Lx − Ly is in general not elliptic or parabolic, this positivity
preserving property is quite unexpected.

7.3 Examples

1. Class functions on a finite group. We consider some finite group G, and consi-
der te functions which are invariant under conjugacy, that is f(x) = f(g−1xg) for
any g ∈ G. They are indeed functions on the quotient space Ġ formed with the
conjugacy classes. Then, the uniform measure on G induces a natural probability
measure on Ġ, where the measure of a class is proportional to it’s size. A natural L2

basis for this space is formed by the characters of the group, that is the traces of the
non equivalent irreducible representations. It turns out that, when restricting the
convolution to class functions, this operation becomes commutative. Then, then
operator f 7→ δx ∗ f is a markov operator, and δx ∗ χ = χ(x)

χ(e)
χ for any character,

where e is the identity element. Then, the hypergroup property holds in this case
with x0 = e.

2. Achour-Trimèche’s result. Another striking example of the hypergroup pro-
perty is the following. Consider a symmetric interval [−1, 1] and a probability
measure µon it, with a log-concave smooth density ρ, that we assume moreover
symmetric around the origin. Consider then the operator L(f) = f ′′ + ρ′

ρ
f ′, which
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is symmetric in L2(µ). Assume that the spectrum of L, with Neuman boundary
conditions, is discrete (it is enough for this that log ρ is bounded on the interval),
and let (fn) be the eigenvectors. Then, f0 = 1 and (fn) is an orthonormal L2(µ)
basis.
Then, Achour-Trimèche’s theorem asserts that this basis has the hypergroup pro-
perty, where x0 = ±1. This result is far from trivial and we shall not expand on it
here.

3. Gasper’s result. This is perhaps the most famous result on the subject. It
concerns Jacobi polynomials on (−1, 1), which are form an orthonormal basis for
the measure Ca,b(1 − x)a(1 + x)bdx, with a, b > −1. Then, provided b ≥ a, and
a ≥ −1/2 or a + b ≥ 0, the hypergroup property holds for this basis with x0 = 1.
Once again, this pproperty is quite hard to establish, but we shall provide a simple
proof inspired by a recent paper of Carlen-Geronimo-Loss, and may be extended
in many settings where orthogonal polynomial are concerned, provided they are
eigenvectors of some diffusion operator.

7.4 The Carlen-Geronimo Loss method

In what follows we assume that we have some topological space Ω with some proba-
bility measure µ and some L2(µ) orthonormal basis (fn), where as before f0 = 1. The
fundamental assumption is that there exists a symmetric operator L acting on L2(µ) such
that for any n, fn is an eigenvector of L, where the associated eigenvalue is simple. We do
not require indeed that L is effectively defined on L2(µ), but only of the dense subspace
of the finite linear combinations of the vectors fn (the algebraic span F of the fn), and be
symmetric on it. Moreover, and for simplicity and since this fits with the examples below,
we shall assume that F is an algebra of bounded functions which spans the σ-algebra,
and that L(f0) = 0 and that.

Then, assume that we have some auxiliary space Ω1, endowed with a probability
measure µ1 and a symmetric operator L1 on it. We also require that L1(1) = 0. We
moreover require a few additional actors

1. A map π : Ω1 7→ Ω, such that L1 maps to L, in the sense described above. More
precisely, if we denote also by π the adjoint map L2(µ) 7→ L2(µ1) defined by
π(f)(x1) = f(π(x1)), we once again require L1 to be defined and symmetric only
on the functions π(fn), and that f(π(x)) belongs to the algebraic span of the fn.
Then, we require L1π = πL.

2. A map φ = Ω1 7→ Ω1, such that, with the same notations and restrictions as before,
we have L1φ = φL1.

3. Some point x0 in Ω such that, provided Y is a random variable taking values in Ω1

with law µ1, the conditional law of π(φ(Y )) given that π(Y ) = x0 is a Dirac mass
at some point x ∈ Ω.
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Proposition 7.1. Then the main result is the following : the sequence ( fn(x)
fn(x0)

) is a Markov
sequence.

Proof. — (We only provide a sketch of it).

We start with a few remarks. First, since L is symmetric on F , we have that
∫
L(fn)dµ =

0, for any n ≥ 0, and this property entirely characterizes the measure µ, since then two
probability measures which share this property coincide on F , and the monotone class
theorem allows to conclude.

From this, one may conclude that the image of µ1 under π is µ. Indeed, if we denote
µ̂ this image measure, we have, for f ∈ F∫

Lfdµ̂ =

∫
πLfdµ1 =

∫
L1πfdµ1 = 0.

We consider the Markov operator K(f)(z) = E(f(π(Φ(Y ))/π(Y ) = z), where Y is
distributed according the the measure µ1. It is by construction a Markov operator, and
we shall see that K(fn) = fn(x)

fn(x0)
fn.

For this, for a function f : Ω 7→ R, we already introduced the notation π(f) = f ◦ π :
Ω1 7→ R. Similarly, for a function g : Ω1 7→ R, denote Φ(g) = g ◦ Φ. The hypotheses
translate into L1π = πL, and L1Φ = ΦL1.

We shall see thatK(fn) is an eigenvector of L. Indeed, denoting by 〈f1, f1〉 =
∫
f1(x)f2(x)dµ(x)

and 〈g1, g2〉1 =
∫
g1(y)g2(y)dµ1(y), the operator K may be characterized by the property

〈K(f1), f2)〉 = 〈Φπf1, πf2〉1.

Now, for f, g ∈ F ,

〈K(Lf), g〉 = 〈ΦπLf, πg〉 = 〈L1Φπf, πg〉 = 〈Φπf,L1πg〉
= 〈Φπf, πLg〉 = 〈K(f),Lg〉 = 〈LK(f), g〉,

from which we conclude that LK = KL o n F . Then, K(fn) is also an eigenvector of L.
Since the eigenspaces of L are one dimensional, we may conclude that there exists some
constant cn such that K(fn) = cnfn.

Next, we observe what happens at the point x0. By assumption, for any continuous
function, K(f)(x0) = f(x), so that cn = fn(x)

fn(x0)
.

To apply this result to the hypergroup property, one now needs to construct such a
model Ω1 with enough functions φ such that the associated points x cover all the space
Ω.
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7.5 Applications to some polynomial models

All the problem consists in constructing the space Ω1, together with the maps π and
Φ, and to identify x0. For this, it is useful to have some geometric model first, for some
values of the parameter from which the measure depend, and then to extend this model
to the general case.

1. Rewriting Gasper’s theorem.We recall that it concerns the Jacobi polynomials
which are orthogonal with respect to the measure Ca, b(1 − x)a(1 + x)bdx, and
eigenvector of the Jacobi operator. For simplicity, we move it on (0, 1) with the
measure C ′a,bxa(1−x)bdx. We already say that when a = (p−1)/2 and b = (q−1)/2,
then the Jacobi operator (up to a factor 4) is the image of the spherical Laplace
operator on the unit sphere in Rp+q, acting on the variable x = x2

1 + · · ·x2
p. We

assume here that p ≤ q (so that a ≤ b). Let X = (x1, · · · , xp), Y = (xp+1, · · · x2p)
(and for this to make sense we need p ≤ q). Let (X, Y, Z) be the corresponding
point on the sphere in Rp+q.
Then, we may chose as Ω1 the sphere, L1 is the spherical Laplace operator and π
is the map (X, Y, Z) 7→ ‖X‖2. For the map Φ, consider any θ ∈ [0, 2π), and set
Φθ(X, Y, Z) = (Xθ, Yθ, Z), where

Xθ = cos(θ)X + sin(θ)Y, Yθ = − sin(θ)X + cos(θ)Y

Φθ is a rotation in Rp+q, so that it commutes with L1. Now, if x0 = 1, and x0 =
π(X, Y, Z), then Y = Z = 0, and therefore πΦ(X, Y, Z) = cos(θ). So that the
conditional law of πΦ(X, Y, Z) knowing that π(X, Y, Z) = x0 is a Dirac mass at
cos(θ). Those values cover all (−1, 1) and we have proved Gasper’s theorem in this
case.
We now want to extend the result to the general case where a and b are no longer
half integers. The key observation is the following : to describe the effect of the
rotations Φθ on x = ‖X‖2, we only need to consider ‖X‖2 = x, ‖Y ‖2 = y together
with their scalar product u = X · Y .
It turns out that the (x, y, u) again form a close system on the sphere. Indeed, for
the spherical Laplace operator, we have

Γ(x, x) = 4x(1− x),Γ(y, y) = 4y(1− y),Γ(x, y) = −4xy;

Γ(u, u) = x+ y − 4u2,Γ(x, u) = 2u− 4xu,Γ(y, u) = 2u− 4yu

and

L(x) = 2p− 2(p+ q − 1)x, L(y) = 2p− 2(p+ q − 1)y, L(u) = −2(p+ q − 1)u.

This is a new polynomial model, with boundary {(1 − x − y)(u2 − xy) = 0}, and
invariant measure

Cp,q(1− x− y)α(xy − u2)βdxdydu,
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with
α = (q − p− 3)/2, β = (p− 3)/2.

Now, this new model is also valid when p and q are no longer half integers, and,
for general a and b, we chose this model with invariant measure with density
Ca,b(1− x− y)b−a−3/2(xy − u2)a−1dxdydu, which is a probability measure as soon
as a > 0 and b > a+ 1/2 (that is this polynomial model with this carré du champ
and with this reversible measure).
In this setting, the map π is the projection (x, y, u) 7→ x, and the map Φθ writes
Φθ(x, y, u) = (x1, y1, u1) with

x1 = cos2(θ)x+ sin2(θ)y + 2 sin(θ) cos(θ)u,

y1 = sin2(θ)x+ cos2(θ)y − 2 sin(θ) cos(θ)u,

u1 = sin(θ cos(θ)(y − x) + (cos2(θ)− sin2(θ)u).

which is easily seen to commute with the operator (this is obviously the case when
a and b are half integers). So we get Gasper’s result for the cases b ≥ a+1/2, a ≥ 0,
(since the property remains true in the limit).

2. The simplex model. This is the most natural extension of the Jacobi polynomial
case in higher dimension. Recall that the n-dimensional simplex is the domain
Ω ⊂ Rn such that xi > 0,

∑
i xi < 1. It is endowed with the Dirichlet measure with

density
Cxa11 · · ·xann (1− x1 − · · · − xn)an+1dx1 · · · , dxn,

where ai > −1, i = 1, · · · , n.
This is also a polynomial domain, but there are many processes (that is many Γs)
for which the boundary equation is satisfied. The most natural one has a simple geo-
metric interpretation. Once again we consider a spherical Laplace operator one the
unit sphere in RN , and chose a partition of {1, · · · , N} in disjoint sets I1, · · · , In+1

with |Ij| = pj. Then, for a point Y ∈ SN1 , we set xj =
∑

i∈Ij Y
2
i . The variables

(x1, · · · , xn) form a closed system for the spherical Laplace operator, and the re-
sulting image operator is an operator on the simplex with invariant measure the
Dirichlet distribution, where ai = (pi − 1)/2. The carré du champ on the simplex
for this operator is given by Γ(xi, xi) = 4xi(δij − xj).
Unfortunately, the eigenspaces for this operator is high dimensional, since the ei-
genvalues associated with a polynomial with highest degree term xk11 · · ·xknn depend
only on k1 + · · ·+ kn. Therefore, the associated family of orthogonal polynomial is
not properly defined. So we must introduce a more general polynomial operator on
the simplex, with the Dirichlet distribution as reversible measure. The geometric
model for this is the following. Still considering the partition (I1, · · · , In+1), one
may introduce the operator

Lp,q =
∑

i∈Ip,j∈Iq

(yi∂yj − yj∂yi)2,
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so that the spherical Laplace operator is nothing else than
∑

p,q∈{1,··· ,n+1} Lp,q.
But it turns out that the above variables (x1, · · · , xn) form a closed system for any
Lp,q, so that we may consider the operator

∑
p6=q Ap,qLp,q and it’s image on the

simplex, which is elliptic as soon as Ap,q > 0 for any pair (p, q). (The action of Lp,p
vanishes on the variables xi.
One may then prove that, for a dense subset of the Ap,q and a dense choice of the
parameters ai, the eigenvalues are simple. One may then construct as we did in the
one dimensional case an intermediate model, which projects on the simplex and
with proper transformations Φ. However, although the geometric picture is quite
close to the one dimensional case, the construction is more complicated. If we rank
the integers p1 ≤ p2 ≤ · · · ≤ pn, we extract first from each set Ik some subset of
size p1, and consider the associated vectors Xk ∈ Rp1 . We also consider the vector
Yk formed with the pk−p1 coordinates in Ik which do not appear in Xk. Then, the
process on the simplex is the image of the similar process on the sphere through
the map X 7→ (‖X1‖2, ‖X‖2

2 + ‖Y2‖2, · · · , ‖Xn‖2 + ‖Yn‖2).

Then, the rotations Φθ may be replaced by the various rotations (Xi, Xj) 7→
cos(θ)Xi + sin(θ)Xj,− sin(θ)Xi + cos(θ)Xj). For the non geometric case (that is
when the parameters pi are no longer integers), one may use as intermediate model
the model consisting of the variables xi = ‖Xi‖2, yi = ‖Yi‖2 and uij = Xi ·Xj.
The image measure may then be expressed using the determinant of the Gramm
matrix of the vectors Xi, together with the variables yi. It becomes a bit technical,
although a direct generalization of the previous one dimensional case, and we do
not expand on it

3. The Deltoid model.
This is one example of the application of the model to some affine root system (here
A2). It concerns the action of the 2 dimensional Laplace operator on functions which
are invariant under the symmetries around the lines of a triangular lattice in the
plane. Those functions are indeed functions of the real and imaginary parts of the
function R2 7→ C : Z(x) = exp(ix · · · e1) + exp(ix · · · e2) + exp(ix · · · e3), where eI
are the 3 third roots of unity in the complex plane. It turns out that the image
Z(R2) is the deltoid domain, which is one of the 11 polynomial domains in R2 with
the usual degree. If, for 3 complex numbers satisfying |zi| = 1 and z1z2z3 = 1, we
write Z = z1 + z2 + z3, and look at the discriminant Q(Z, Z̄) of the polynomial
(X − z1)(X − z2)(X − z3) = X3 −ZX + Z̄X − 1, the equation of the boundary is
Q(Z, Z̄) = 0 and the measure may be written as |P (Z, Z̄)|αdZdZ̄.
There are two geometric cases : α = −1/2, which corresponds to the image of the
2 dimensional Laplace operator, and α = 1/2, which corresponds to the Casimir
operator on SU(3) acting on the trace of a matrix (which in this case collects all
the spectral information and therefore form a closed system).
One again, one may construct an intermediate model for the general case (which
is 6 dimensional in this case). It consists in the following observation : for the
Casimir operator on SU(3), the 3 diagonal entries form a closed system. Then,
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this system provides a domain with an associated Γ operator, for which one may
adjust the measure such that the map π : (z1, z2, z3) 7→ z1 + z2 + z3 projects this
model on the deltoid model. The rotations are now expressed as Φθ : (z1, z2, z3) 7→
(z1e

iθ, z2e
iφ, z3e

−iθ−iφ).
We are in situation to prove the hypergroup property in this case. But an extra
complication comes from the fact that the eigenspaces are 2 dimensional, and then
the representation of Markov kernels have a most complex form. Once again, we
do not expand on it.
The case of the root system An, or the model obtained from traces of SU(n)
matrices, remainss completely open.

8 Models on the boundaries

In many models, we may see that there are some parameters for which the process has
a nice density as long as the parameters are beyond some limit. At the limit, the measure
is singular and has support the boundary of the set. For example, on the projection of
the sphere in dimension p, with L(zi) = −(d − 1)zi, when d → p − 1, one converges to
the spherical model on the sphere Sp−1 ⊂ Rp. This example is simple to analyse. But it
becomes more tricky for example for the projection of SO(d) on p × q matrices, where
the measure concentrates on det(Id − mm∗) = 0 when d → p + q − 1. It is even worse
that in this case we may suspect a lot of thresholds, when successively one, two or more
eigenvalues of the matrix Id −mm∗ are set to 0, up to the end where p = q = d and all
eigenvalues are 0 and the matrix is carried by the SO(d) group.

We have a good way to identify the Lebesgue measure (and therefore the density with
respect to it) in a system of coordinates through the fact that

∫
∂ifdλ = 0, for smooth

compactly supported functions.

May we do that on the submanifold {P = 0}, around some non singular point ?

Indeed, the surface Lebesgue measure may be represented as follows. If we start from
a naive representation, say that we express the last coordinate in terms of the others.
Then, the surface measure is nothing else than the Riemannian measure for the surface.
In coordinates (x1, · · · , xd−1), one has, for the Euclidean metric in the ambiant space

|dx|2 = (δij + uiuj)dxidxj,

where ui = ∂iP
∂dP

, writing dxd = −
∑d−1

i uidxi. Therefore, in this system of coordinates,
the surface measure writes det(Id + u⊗ u)1/2dx1 · · · dxd−1. But det(Id + u⊗ u) = 1 + |u|2.
Then, the surface measure in the coordinates (x1, · · · , xd−1) is |∇P ||∂dP |

dx1 · · · dxd−1. Then,
one sees that, for this surface measure∫

Vid(f)dσ = 0,
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where
Vid =

1

|∇f |
(∂dP∂if − ∂iP∂df).

(Those vectors are obviously tangent to the surface {P = 0}. Observe that we could do
the same for any other coordinates, such that they are linked, and in fact we just get d−1
independent ones, with moreover their commutators. Of course, on the sphere for example,
this is just the infinitesimal rotations. This may certainly lead to the identification of the
density of the associated operators with respect to the surface measure indeed.

In our models however, we consider the limit CεP−1+ε1lP>0dx when ε → 0. This
converges to some limit measure which has a density 1

|∇P | with respect to the surface
measure. In our system of coordinates (x1, · · · , xd−1), this surface measure has the density

1
|∂dP |

with respect to the Lebesgue measure dx1 · · · dxd−1.

But now, with this measure dσP = 1
|∇P |dσ, one gets∫
Wi,d(f)dσP = 0,

where Wi,d = ∂dP∂i − ∂iP∂d, which are much more at hand for algebraic computations.

One main obstacle here is that one no longer has L =
∑

ij g
ijWiWj + biWi, and

moreover, thoseWi do not commute. However, we may make use of the fact that Γ(P, xi) =
axiP .

Our problem now is to develop the analogy with the formula 1
ρ
∂i(g

ijρ∂j), where Vid
would replace ∂i, with the major difference that the change of variable formula is expressed
with ∂i and not Vi.

In other words, given some process with the knowledge of Γ(xi, xj) = gij and L(xi) =
bi, if we know that the is a function (a polynomial) which satisfies L(P ) = Γ(P, P ) = 0 on
{P = 0}, how one would describe the invariant measure for the process living on {P = 0}
from gij and bi ? One should now be in situation to describe from Γ and L the density
of the invariant measure with respect to the surface measure, as we did for the Lebesgue
measure.

Indeed, around a non singular point of the surface {P = 0} where ∂dP 6= 0, in the
coordinate system (x1, · · · , xd−1), one may compare the formulas for the density.

On the one hand, we have, outside {P = 0}, for the drift bi = L(xi)

bi =
d∑
j=1

gij∂j logP−1 +
d∑
j=1

∂jg
ij.

On the other, in this local system of coordinates

bi =
d−1∑
j=1

gij∂j log
|∇P |
∂dP

+
d−1∑

1

∂jg
ij.
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Comparing, we should end up, on {P = 0}, with

lim
P→0

d∑
j=1

gij∂j logP−1 + ∂dg
id =

d−1∑
1

gij∂j log
|∇P |
∂dP

.

This should rely on the sole equations, on {P = 0}

L(P ) = 0,Γ(P, xi) = 0.

Observe also that n our polynomial systems, then limP→0

∑d
j=1 g

ij∂j logP−1 make a per-
fect sense, since the boundary equations tells us that they are first order polynomials (and
cxi in all our cases).

The equations on P give us, on {P = 0}

(8.17)
d∑

ij=1

gij∂ijP +
d∑
i=1

bi∂iP = 0,

and

(8.18)
d∑
i=1

gij∂jP = 0.

Observe that the boundary equation gij∂j logP = Li, with Li degree 1, together with
the equation satisfied by the measure allows to take derivative in equation (8.18) to get

d∑
ij=1

gij∂ijP +
d∑
i=1

bi∂iP = (
∑
i

∂iLi)P.

In this case, L(P ) = 0 on the boundary and equation (8.17) is a consequence of (8.18).

Let us look at the example of spheres, where on the unit ball Bp we have Γ(xi, xj) =
δij−xixj with L(xi) = −(d−1)xi. When d−1→ p−1, the the measure converges to the
uniform measure on Sp−1. But, for the process to live on Sp−1, with this Γ and L(xi) =
−λxi, then it is necessary that λ = p− 1 (that is d = p− 2). Otherwise, for R =

∑
i x

2
i ,

the relation L(R) = 0 would not hold true on Sp−1, since then L(R) = 2(p−λ−R), while
one still have Γ(R,R) = 4R(1−R). One has similarly a family of processes living on this
p− 1 sphere (indeed on half spheres), playing the same rôle as before. But then, one has
to break the symmetry, for example choosing L(xp) such that it fits with the fact that
L(R) = 0, and then we have those processes on the sets xp > 0.

However, things seem to be more complicated for the matrix Jacobi processes when
d = p+q (d playing now the rôle of a parameter), since then one would also have a process
with the same set of p × q matrices, with d = p + q − 2, up to d = max(p, q). So that
the process exists for any d > p + q − 1, with a invariant probability measure which has
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a density with respect to the Lebesgue measure in the entries, while then it only exists
whenever d is an integer taking values in d ≥ max(p, q), and the law seems to be then
supported by {P (1) = 0}, and then {P (1) = P ′(1) = 0}, etc. This of course has to be
checked precisely. We have exactly the same problem for Wishart matrices, that is mm∗
where m is p× q with gaussian independent entries. (then the set of parameters is known
to be the Jorgensen ensemble : continuous if p ≥ q and discrete afterwards).

9 Models in dimension 2 and 3

1. The 11 compact 2-d models with the usual degree
We shall not extend on this part. the complete list of associated figures is given in
the appendix.
The special feature of the usual degree is that the full problem is then invariant un-
der affine transformation (with weighted degrees, an affine transformation changes
the degree of a polynomial). Then, the unique fact that the boundary staisfies the
boundary equation is enough to completely describe all the possible models.
This relies on the study of the local singularities of a curve for which the boundary
equation is satisfied. For this, we consider this a a pure algebraic problem, that is
we consider the curve in complex coordianates, and even in the complex projective
space. Then, the main observation is that such a curve may not have any flex point
of flat point (at least outside the infinity line), that is a point where it could be
parametrized locally as y = x3 + o(x3) or y = x4 + o(x4). A generic algebraic curve
however has many such points, and the fact that it has no such points imposes
that it must have many singular points. These singular points and their numbers
are computed through Plucker’s formulas, and the resulting list of all possible
remaining possibilities lead to the complete description of all the possible models.
It turns out that, among those models, whenever the Laplace operator is an ad-
missible solution, the curvature is constant. All the models that one may describe
then (at least when the curvature is constant and the metric is unique) belong to
2 large families : the ones which may be constructed from affine root system in
a Euclidean space, and the ones which may be constructed from finite subgroups
of O(3). But some of such examples escape to this list (the model associated with
the G2 root system for example), and to cover al such models, one has to consider
models with weighted degrees.
See the complete list with pictures at the end of these notes.

2. The non compact 2-d models with usual degree
If we are interested in non compact domains, the boundary equation is not fully
justified for non compact models. However, one may look for the non compact
models which satisfy this boundary equation. It turns out that we are left with the
products of one dimensional models, or the domains bounded by a parabola and
a cuspidal cubic (equation Y 2 = X3). As in dimension 1, those models appear as
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limits on bounded models. The hardest case seem to be the full R2 case (without
boundary), where one may prove that the only admissible measures are Gaussian
measures, although there are other operators that Ornstein-Uhlenbeck ones (for
example, one may add C(x∂y − y∂x)

2 to an Ornstein-Uhlenbeck generator. On
natural conjecture is that in Rn without boundaries, the only admissible measures
are Gaussian measures.

3. More models with weighted degrees : invariant theory.
There are some other more subtle projections of the sphere, using discrete groups
(and of course one may mix discrete and continuous groups). Here is a trick. In
dimension 3, suppose that we have a discrete (finite) group of rotations with axes
Vi, such the axes of the rotations are exchanged by the group. Consider the ho-
mogeneous polynomial P (x) =

∏
i(Vi.x), invariant under the group action. With

this polynomial P (x), one may construct a new polynomial Q(x) with the same
homogeneity and which is harmonic, and invariant. Then, it happen quite often
that the Laplace operator projects onto (XY ), with X = Q(x), Y = Γ(X,X). We
give some of these examples.
Writing (x, y, z) ∈ R3 and x+ iy = τ , consider Y = <(τn), X = z. Then, we get a
process with L(X) = −2X,L(Y = −n(n+ 1)Y

Γ =

(
(1−X2) −XY
−XY (1−X2)n−1 − Y 2

)
The boundary has 1 or two components according to n even or odd, and this gives
rise to a family with one or two parameters.
We get new models changing X into X2, or Y into Y 2 or both.
here is another model : X = xyz, Y = x + y + z, or X = xyz, Y = x4 + y4 + z4

(corresponding to the symmetries of the cube).
Still another more tricky, corresponding to the symmetries of the tetrahedron c =
(1+
√

5)/2, and start from X = (c2x2−y2)(c2y2−z2)(c2z2−x2), and Y = Γ(X,X).
We produce a very strange 2-d model with one parameter.
In any dimension, a good way to construct such models is to look at finite sub-
groups of O(n), leading to some weighted polynomial models (but one may also
construct weighted models in dimension 2 through other techniques, such as affine
crystallographic groups).
The spherical Laplace operator is invariant under rotations. So if G ⊂ O(3), then
functions invariant under G are stable under L and Γ. If we may generate those
polynomial invariants from polynomials, then one will get polynomial models.
Indeed, if P is a polynomial invariant under G, since the spherical Laplace operator
commutes with rotations, so is L(P ). Since we restrict our polynomials to spheres,
it is enough to look for homogeneous invariant polynomials. The game is then to
find some invariant polynomials X1, · · · , Xk such that all invariant polynomials
is a polynomial Q(X1, · · · , Xk). Then, we shall get a closed system (X1, · · · , Xk)
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for the Laplace operator, and therefore a weighted polynomial model, where the
weight of the variable Xk is it’s usual degree.
Bur if we want a model which satisfies the conditions of the theorem, we need
to have no algebraic relations between the polynomials Xk. The next paragraph
describes the structure of polynomial invariants in general.
Primary and secondary invariants . For any finite group acting linearly of a
finite dimensional vector space, one may find invariant homogeneous polynomials
θi and ηi such that each invariant homogeneous polynomial may be written as

P0(θ1, · · · , θn) +
k∑
i=1

ηiPi(θ1, · · · , θn),

where Pi are polynomials (in the variables (θ1, · · · , θn). The polynomials θi are
algebraically independent, their number do not depend of their choice (and is
the dimension of the vector space as soon as the representation is irreducible).
Moreover, each ηi satisfies some monic polynomial equation in the variables θ =
(θj), that is satisfies an algebraic identity of the form

ηpii + ηpi−1
i Qi,1(θ) + · · ·+Qi,pi(θ) = 0,

where Qi,k(θ) are polynomials in the variables (θ1, · · · , θn). These algebraic rela-
tions are called syzygies (such algebras are called Cohen-MacCauley algebras). The
number of the secondary invariant may depend on the choice of the θi and ηi.
Mollien’s formula provides the dimension of the space of invariant homogeneous
polynomials with degree n.
Let dn be the dimension of the space of degree n homogeneous polynomials which
are invariant under a group G, and define F (G, t) =

∑
n dnt

n

F (G, t) =
1

|G|
∑
g∈G

1

det(Id− tg)
.

A theorem of Chevalley asserts that there are only primary invariants if and only
if the group is generated by pseudo reflections (in our case, just reflections through
hyperplanes) : that is Coxeter groups.
Since the bigger is the group, the fewer invariants it has, and since we are interested
only in the case where the polynomials are algebraically independent, one may
think we should only concentrate on the Coxeter groups. We shall see (at least in
dimension 3), that it is not the case. It turns out that the syzygies may provide
domains in higher dimensions which are also polynomial models. Up to now, we
have no explanation for this fact. Moreover, in higher dimensions, the syzygies may
not again be algebraically independent. There are second order syzygies, and so
on. We did not explore is such higher degree syzygies may also lead to polynomial
models.

54 9 mars 2017



preprint under construction

4. Construction of 2d and 3d models from symmetry groups in R3.
Three families of finite subgroups of O(3) (classified by F. Klein).

(a) Subgroups of the rotations with angle 2π/n in the plane
(b) Subgroups of the isometry group of the tetrahedron (contains groups of the

cube/octahedron)
(c) Subgroups of the isometry group of the icosahedron/dodecahedron

All these are subgroups of Coxeter groups. Have to describe the polynomial inva-
riants (primary and secondary) and the syzygies.
Example : Plane rotation groups. . Variables (x, y, t), z = x + iy. Invariants
Xn = <(zn), Yn = =(zn), t, linked by the relation X2

n + Y 2
n = (1− t2)n.

(a) Polynomial model in 2−d with (Xn, z) = (X, Y ). Domain {(1−Y 2)n−X2 ≤ 0} :
one or two irreducible factors according if n odd or even.

(b) Polynomial model in 3− d using the syzygies.
One may write explicitly the relations between Γ(U, V ) for U, V ∈ {Xn, Yn, t} as
polynomials in the variables {Xn, Yn, t}. Then comes the surprise : the surface
X2 +Y 2− (1−Z2)n is the boundary of a polynomial model in 3− d, where the
Γ are given by the polynomial relations on the sphere.

It is worth to observe that in dimension 3, there exists a finite subgroup of O(4)
which is not a subgroup of a Coxeter group. For this, we are unable to associate any
polynomial model with densities, and the domains (in R4) described by the syzygies are
not polynomial domains.

See at the end of these notes the list of such 2-d and 3-d models that one may construct
in this way.

9.1 Pictures

Up to affine transformations, with the usual degree, we have 11 models in dimension
2
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] Curv. d(Ω) Boundary Picture

1 0 4 (1−X2)(1− Y 2) = 0

2 ' 2 1−X2 − Y 2 = 0

3 ' 3 XY (1−X − Y ) = 0

4 + 4, 3 (1−X2)2 − Y 2 = 0

5 + 4 Y (1−X)(X2 − Y )

6 0 4 (Y −X2)((Y + 1)2 − 4X2) = 0

7 ' 3 Y 2 −X2(1−X) = 0

8 + 4 (Y 2 −X3)(X − 1) = 0

9 + 4 (Y 2 −X3)(2(Y − 1)− 3(X − 1)) = 0

10 + 4 4X2 − 27X4 + 16Y − 128Y 2 − 144X2Y + 256Y 3 = 0

11 0 4 (X2 + Y 2)2 + 18(X2 + Y 2)− 8X3 + 24XY 2 − 27 = 0
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2 d and 3 d models with weighted degrees issued from 3-d rotation groups. The first
series includes the models issued form the dihedral family, with Hn(X, Y ) = (1−X)n−Y ;

Group θ1 θ2 η Ω Boundary Picture

Cn|Dn z Xn Ω
(n)
1 Hn(X2, Y 2) = 0

Cn z Xn Yn Ω
(n)
2 Hn(X2, Y 2)− Z2 = 0

Dn,J ,Dn|D2n z2 Xn Ω
(n)
3 XHn(X, Y 2) = 0

CnJ , Cn|C2n z2 Xn Yn Ω
(n)
4 X(Hn(X, Y 2)− Z2) = 0

Dn z2 Xn zYn Ω
(n)
5 XHn(X, Y 2)− Z2 = 0

D2n,J z2 X2
n D6(Ω

(n)
3 ) XYHn(X, Y ) = 0

Dn|D2n,Dn,J

Cn|C2n, Cn,J z2 X2
n zYn Ω

(n)
7 XHn(X, Y )− Z2 = 0

Cn|C2n, Cn,J z2 X2
n zXn Ω

(n)
8 (XY − Z2)Hn(X, Y ) = 0

Cn|C2n, Cn,J z2 X2
n XnYn D9(Ω

(n)
4 ) X(Y Hn(X, Y )− Z2) = 0

When there are two groups, the first one is for n odd, the second is for n even.
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The last series provides the models issued from the the isometry groups of the cube/icosaedron/dodecahedron
family. Moreover, H(X, Y ) = 108X2 − 20X − 2Y 3 + 5Y 2 − 4Y + 36XY, and

S(X, Y ) = 688
√

5X4 + 6480
√

5X3Y + 1728X5 + 364X3
√

5 + 6042
√

5X2Y + 23400
√

5X Y 2

+17050
√

5Y 3 + 1376X4 + 14400X3Y + 68X2
√

5 + 1288XY
√

5 + 1220
√

5Y 2

+819X3 + 13515X2θ2 + 52325X θ2
2 + 38125Y 3 + 152X2 + 2880X Y + 2728Y 2

G θ1 θ2 η Ω Boundary Picture

T |O O3 O4 Ω11 H(X2, Y ) = 0

T O3 O4 O6 Ω12 H(X2, Y )− 4Z2 = 0

OJ O2
3 O4 Ω13 XH(X, Y ) = 0

TJ O2
3 O4 O6 Ω14 X(H(X, Y )− 4Z2) = 0

O O2
3 O4 O3O6 Ω15 Z2 −XH(X, Y ) = 0

IJ O6 O10 Ω21 S(X, Y ) = 0

I O6 O10 O15 Ω22 Z2 = S(X, Y )

10 Bibliography

These bibliographic items have no claim to be complete. It just points to some useful
books for the non specialists (or at least books that I found useful). One may find on
arkiv most of the papers of the my co-authors and myself on the subject, and one may
look at the references therein. Beyond this, on some specific topics :
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1. On orthogonal polynomials in many variables, there are many books. The most
accessible is for me Dunkl and Xu [6]. Much harder, but quite deep, I. MacDonald,
[15, 16], and Geck-Jacon [10]

2. On Lie groups and algebras, there are a lot of very good books, from introductory to
very technical. For me, in increasing order of accessibility Faraut [7], Gilmore [12],
Knapp [14], Brocker and Dieck [3], Fulton and Harris [9], and the most complete
Helgason [13]

3. On polynomial invariants, there are also some quite friendly books for non spe-
cialists : L. Smith [20] (together with his AMS survey [21]), R. Stanley [22] (more
an expository paper than a book), Procesi [18, 19], and the very nice paper on
invariants for the subgroups of 0(3) by Burnett Meyer [17].

4. On the analysis on spheres Stein-Weiss [23], the web page of P. Garett (http :/www.math.umn.edu/garrett/)
5. On discriminants, beyond the classical theory quite well explained in wikipedia,

one may try to look at the book of Gelfand-Kapranov-Zelevinski [11] ( for an
introduction to the many variables theory : quite hard to read, at least for me).

6. On the geometry of matrices Zhe-Xian Wan [25], and also Chikuse [4], but more
specifically on spectral measures, see also Forrester [8]

7. On recurrence formulas, the considerations come from questions of M. Ledoux
8. On Hypergroups, there is a very large treaty Bloom and Heyer [2]. More spe-

cifically on Gelfand pairs, which is indeed at the core of the Carlen-Geronimo-
Loss method, see Gerritt van Dijk [24]. And also the web page of T. Koornwinder
https ://staff.fnwi.uva.nl/t.h.koornwinder/ is full of useful informations, articles
and references.
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